计蒜客OJ:跳跃游戏(动态规划)
https://nanti.jisuanke.com/t/18
给定一个非负整数数组,假定你的初始位置为数组第一个下标。
数组中的每个元素代表你在那个位置能够跳跃的最大长度。
请确认你是否能够跳跃到数组的最后一个下标。
例如:A=[2,3,1,1,4]A = [2,3,1,1,4]A=[2,3,1,1,4] 能够跳跃到最后一个下标,输出true
;
A=[3,2,1,0,4]A = [3,2,1,0,4]A=[3,2,1,0,4] 不能跳跃到最后一个下标,输出false
。
输入格式
第一行输入一个正整数 n(1≤n≤500)n(1 \leq n \leq 500)n(1≤n≤500),接下来的一行 nnn 个整数,输入数组 AiA_iAi。
输出格式
如果能跳到最后一个下标,输出true
,否则输出false
。
样例输入
5 2 0 2 0 1
样例输出
true
思路:利用动态规划,dp[i][j]表示从第i位置,是否能跳到j位置,若能则dp[i][j]=1,否则dp[i][j]否则=0;
AC代码:
#include<bits/stdc++.h> #define maxn 600 using namespace std; int f=0; int n; int dp[maxn][maxn]; int vis[maxn]; int a[maxn]; int main() { cin>>n; for(int i=1;i<=n;i++) { cin>>a[i]; } if(n==1){ cout<<"true"<<endl; return 0; } /*else if(n==2&&a[1]) { cout<<"true"<<endl; return 0; }*/ dp[n][n]=1; dp[1][1]=1; for(int i=1;i<=n;i++) { if(n-i<=a[i]) { vis[i]=1; dp[i][n]=1; } } for(int i=n;i>=1;i--) { for(int j=i;j>=1;j--) { if(i-j<=a[j]) { if(vis[i]) { dp[j][n]=1; vis[j]=1; } dp[j][i]=1; } } } for(int i=2;i<=n-1;i++) { if(dp[1][i]&&vis[i]||vis[1]){ f=1;break; } } if(f)cout<<"true"<<endl; else cout<<"false"<<endl; }