最大公约数的算法

求m和n的最大公约数

1:穷举算法,检测k(k>2)到m和n的最小数之间的数是否是m和n的公约数,假设n<m

      public static int gcd(int m, int n) {

        int gcd = 1;

        for (int k = 2; k <= n; k++) {
            if (m % k == 0 && n % k == 0) {
                gcd = k;
            }
        }
        return gcd;

    }


2:在算法1的基础上进行改进,改进的部分在于不从1向上查找可能的除数,而是从m和n之间最小数开始向下查找,一旦找到  则是最大公约数

     public static int gcd1(int m, int n) {
        int gcd = 1;
        if (m % n == 0)
            return n;
        for (int k = n; k >=1; k--) {
            if (m % k == 0 && n % k == 0) {
                gcd = k;
                break;
            }
        }
        return gcd;
    }


3:在算法2的基础上进行改进  我们知道数字n的除数不可能比n/2大

    public static int gcd2(int m, int n) {
        int gcd = 1;
        if (m % n == 0)
            return n;
        for (int k = n/2; k >= 1; k--) {
            if (m % k == 0 && n % k == 0) {
                gcd = k;
                break;
            }
        }
        return gcd;
    }


4:辗转相除法,也成欧几里得算法

   //递归实现

    public static int gcd3(int m, int n) {
        if (m % n == 0){
            return n;
        }
        else{
            int x=m;
            m=n;
            n=x%n;
            return gcd3(m, n);
        }
    }

   //循环实现

    public static int gcd4(int m, int n) {
        int k = 0;
        do {
            k = m % n;
            m = n;
            n = k;
        } while (k != 0);
        return m;
    }




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值