​力扣解法汇总769.最多能完成排序的块

 目录链接:

力扣编程题-解法汇总_分享+记录-CSDN博客

GitHub同步刷题项目:

https://github.com/September26/java-algorithms

原题链接:力扣


描述:

给定一个长度为 n 的整数数组 arr ,它表示在 [0, n - 1] 范围内的整数的排列。

我们将 arr 分割成若干  (即分区),并对每个块单独排序。将它们连接起来后,使得连接的结果和按升序排序后的原数组相同。

返回数组能分成的最多块数量。

示例 1:

输入: arr = [4,3,2,1,0]
输出: 1
解释:
将数组分成2块或者更多块,都无法得到所需的结果。
例如,分成 [4, 3], [2, 1, 0] 的结果是 [3, 4, 0, 1, 2],这不是有序的数组。

示例 2:

输入: arr = [1,0,2,3,4]
输出: 4
解释:
我们可以把它分成两块,例如 [1, 0], [2, 3, 4]。
然而,分成 [1, 0], [2], [3], [4] 可以得到最多的块数。

提示:

  • n == arr.length
  • 1 <= n <= 10
  • 0 <= arr[i] < n
  • arr 中每个元素都 不同

解题思路:

* 解题思路:
* 这题的核心就是看分区内的数字,是否在对应的位置。假设分区内是2,3,4(顺序无所谓),则在对应的aar数组中,这三个数字一定要在2到4位才可以。
* 所以,这里我们可以用use数组来记录对应的数字是否出现过,因为这题保证元素唯一。
* 然后遍历arr数组,如果读出来的数字是2,则遍历数组中当前位到第2位的位置,其中如果读到了更大的数,则动态更改到最大的数。Math.max(value, value2);,同时使用use来记录是否出现过。
* 遍历完成后,判断use是否全出现过,如果全出现,则说明这个分区是OK的。
 

代码:

public class Solution769 {

    public int maxChunksToSorted(int[] arr) {
        boolean[] use = new boolean[arr.length];
        int result = 0;
        int index = 0;
        while (index < arr.length) {
            int value = arr[index];
            for (int i = index; i <= value; i++) {
                int value2 = arr[i];
                value = Math.max(value, value2);
                use[i] = true;
            }
            boolean flag = true;
            for (int i = index; i <= value; i++) {
                flag &= use[i];
            }
            if (!flag) {
                return 1;
            }
            result++;
            index = value + 1;
        }
        return result;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失落夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值