目录链接:
力扣编程题-解法汇总_分享+记录-CSDN博客
GitHub同步刷题项目:
https://github.com/September26/java-algorithms
原题链接:力扣
描述:
给你一个整数数组 nums
,返回 nums
中最长等差子序列的长度。
回想一下,nums
的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik]
,且 0 <= i1 < i2 < ... < ik <= nums.length - 1
。并且如果 seq[i+1] - seq[i]
( 0 <= i < seq.length - 1
) 的值都相同,那么序列 seq
是等差的。
示例 1:
输入:nums = [3,6,9,12] 输出:4 解释: 整个数组是公差为 3 的等差数列。
示例 2:
输入:nums = [9,4,7,2,10] 输出:3 解释: 最长的等差子序列是 [4,7,10]。
示例 3:
输入:nums = [20,1,15,3,10,5,8] 输出:4 解释: 最长的等差子序列是 [20,15,10,5]。
提示:
2 <= nums.length <= 1000
0 <= nums[i] <= 500
解题思路:
* 解题思路: * 这题的核心就是如何设计一个动态规划的数据源。 * 我们设计一个二维数组dp,dp[i][diff]代表以第i位结束,并且差值为diff的等差数列的最大长度。 * 所以如果我们求dp[i+1][diff],则需要遍历从1到i位置上,所有的可能。 * 比如nums[i+1]-nums[i]=5,则dp[i+1][5]=dp[i][5]+1; * 比如nums[i+1]-nums[i-1]=3,则dp[i+1][5]=dp[i-1][3]+1; * 这样,就出i+1位置所有的等差数列的最大长度。 * 就这样遍历,直到结束,求出最大值。
代码:
public class Solution1027 {
public int longestArithSeqLength(int[] nums) {
int[][] dp = new int[nums.length][1001];
int max = 0;
for (int i = 0; i < nums.length; i++) {
int value = nums[i];
for (int j = 0; j < i; j++) {
int diff = value - nums[j] + 500;
int maxLength = dp[j][diff];
dp[i][diff] = maxLength + 1;
max = Math.max(max, dp[i][diff]);
}
}
return max + 1;
}
}