​力扣解法汇总1027. 最长等差数列

目录链接:

力扣编程题-解法汇总_分享+记录-CSDN博客

GitHub同步刷题项目:

https://github.com/September26/java-algorithms

原题链接:力扣


描述:

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。

提示:

  • 2 <= nums.length <= 1000
  • 0 <= nums[i] <= 500

解题思路:

* 解题思路:
* 这题的核心就是如何设计一个动态规划的数据源。
* 我们设计一个二维数组dp,dp[i][diff]代表以第i位结束,并且差值为diff的等差数列的最大长度。
* 所以如果我们求dp[i+1][diff],则需要遍历从1到i位置上,所有的可能。
* 比如nums[i+1]-nums[i]=5,则dp[i+1][5]=dp[i][5]+1;
* 比如nums[i+1]-nums[i-1]=3,则dp[i+1][5]=dp[i-1][3]+1;
* 这样,就出i+1位置所有的等差数列的最大长度。
* 就这样遍历,直到结束,求出最大值。

代码:

public class Solution1027 {

    public int longestArithSeqLength(int[] nums) {
        int[][] dp = new int[nums.length][1001];
        int max = 0;
        for (int i = 0; i < nums.length; i++) {
            int value = nums[i];
            for (int j = 0; j < i; j++) {
                int diff = value - nums[j] + 500;
                int maxLength = dp[j][diff];
                dp[i][diff] = maxLength + 1;
                max = Math.max(max, dp[i][diff]);
            }
        }
        return max + 1;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失落夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值