题目描述
小 w 在赛场上遇到了这样一个题:一个长度为 �n 且符合规范的括号序列,其有些位置已经确定了,有些位置尚未确定,求这样的括号序列一共有多少个。
身经百战的小 w 当然一眼就秒了这题,不仅如此,他还觉得一场正式比赛出这么简单的模板题也太小儿科了,于是他把这题进行了加强之后顺手扔给了小 c。
具体而言,小 w 定义“超级括号序列”是由字符 (
、)
、*
组成的字符串,并且对于某个给定的常数 �k,给出了“符合规范的超级括号序列”的定义如下:
()
、(S)
均是符合规范的超级括号序列,其中S
表示任意一个仅由不超过 �k 个字符*
组成的非空字符串(以下两条规则中的S
均为此含义);- 如果字符串
A
和B
均为符合规范的超级括号序列,那么字符串AB
、ASB
均为符合规范的超级括号序列,其中AB
表示把字符串A
和字符串B
拼接在一起形成的字符串; - 如果字符串
A
为符合规范的超级括号序列,那么字符串(A)
、(SA)
、(AS)
均为符合规范的超级括号序列。 - 所有符合规范的超级括号序列均可通过上述 3 条规则得到。
例如,若 �=3k=3,则字符串 ((**()*(*))*)(***)
是符合规范的超级括号序列,但字符串 *()
、(*()*)
、((**))*)
、(****(*))
均不是。特别地,空字符串也不被视为符合规范的超级括号序列。
现在给出一个长度为 �n 的超级括号序列,其中有一些位置的字符已经确定,另外一些位置的字符尚未确定(用 ?
表示)。小 w 希望能计算出:有多少种将所有尚未确定的字符一一确定的方法,使得得到的字符串是一个符合规范的超级括号序列?
可怜的小 c 并不会做这道题,于是只好请求你来帮忙。
输入格式
第一行,两个正整数 �,�n,k。
第二行,一个长度为 �n 且仅由 (
、)
、*
、?
构成的字符串 �S。
输出格式
输出一个非负整数表示答案对 109+7109+7 取模的结果。
输入数据 1
7 3
(*??*??
Copy
输出数据 1
5
Copy
输入数据 2
10 2
???(*??(?)
Copy
输出数据 2
19
Copy
输入数据 3
见文件中的 bracket3.in
Copy
输出数据 3
见文件中的 bracket3.ans
Copy
输入数据 4
见文件中的 bracket4.in
Copy
输出数据 4
见文件中的 bracket4.ans
Copy
提示
【样例解释 #1】
如下几种方案是符合规范的:
(**)*()
(**(*))
(*(**))
(*)**()
(*)(**)
Copy
数据范围与约定
测试点编号 | �≤n≤ | 特殊性质 |
---|---|---|
1∼31∼3 | 1515 | 无 |
4∼84∼8 | 4040 | |
9∼139∼13 | 100100 | |
14∼1514∼15 | 500500 | �S 串中仅含有字符 ? |
16∼2016∼20 | 无 |
对于 100%100% 的数据,1≤�≤�≤5001≤k≤n≤500。
CSP-S 2021 第二题
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=5e2+10,MOD=1e9+7;
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9') { if(ch=='-') w*=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
int n,k;
int g[N][N],f[N][N],dp[N][N][2];
char arr[N];
inline bool check(int l,int r){
if(arr[l]=='('&&arr[r]==')') return true;
if(arr[l]=='('&&arr[r]=='?') return true;
if(arr[l]=='?'&&arr[r]==')') return true;
if(arr[l]=='?'&&arr[r]=='?') return true;
return false;
}
signed main()
{
// freopen("bracket.in","r",stdin);
// freopen("bracket.out","w",stdout);
n=read(),k=read();
cin>>arr+1;
for(int l=1;l<=n;l++){
if(arr[l]!='('&&arr[l]!='?') continue;
int cnt=0;
for(int r=l+1;r<=n;r++){
if(arr[r]==')'||arr[r]=='?') dp[l][r][0]=1;
if(arr[r]!='*'&&arr[r]!='?') break;
cnt++; if(cnt>k) break;
}
}
for(register int len=2;len<=n;len++){ //枚举区间长度
for(register int l=1;l<=n-len+1;l++){ //枚举左端点
int r=l+len-1; //右端点
int cnt=0;
for(register int x=l;x<r;x++){
if(arr[x]!='*'&&arr[x]!='?') break;
cnt++; if(cnt>k) break;
f[l][r]=(f[l][r]+(dp[x+1][r][0]+dp[x+1][r][1])%MOD)%MOD;
}
cnt=0;
for(register int x=r;x>l;x--){
if(arr[x]!='*'&&arr[x]!='?') break;
cnt++; if(cnt>k) break;
g[l][r]=(g[l][r]+(dp[l][x-1][0]+dp[l][x-1][1])%MOD)%MOD;
}
for(register int x=l;x<r;x++)
dp[l][r][1]=(dp[l][r][1]+dp[l][x][0]*((f[x+1][r]+(dp[x+1][r][0]+dp[x+1][r][1])%MOD)%MOD)%MOD)%MOD;
if(check(l,r)){ //端点可以为()
dp[l][r][0]=((dp[l][r][0]+dp[l+1][r-1][0])%MOD+dp[l+1][r-1][1])%MOD;
dp[l][r][0]=(dp[l][r][0]+f[l+1][r-1])%MOD;
dp[l][r][0]=(dp[l][r][0]+g[l+1][r-1])%MOD;
}
}
}
printf("%lld\n",(dp[1][n][0]+dp[1][n][1])%MOD);
return 0;
}