【csp-s 2021】括号序列

题目描述

小 w 在赛场上遇到了这样一个题:一个长度为 �n 且符合规范的括号序列,其有些位置已经确定了,有些位置尚未确定,求这样的括号序列一共有多少个。

身经百战的小 w 当然一眼就秒了这题,不仅如此,他还觉得一场正式比赛出这么简单的模板题也太小儿科了,于是他把这题进行了加强之后顺手扔给了小 c。

具体而言,小 w 定义“超级括号序列”是由字符 ()* 组成的字符串,并且对于某个给定的常数 �k,给出了“符合规范的超级括号序列”的定义如下:

  1. ()(S) 均是符合规范的超级括号序列,其中 S 表示任意一个仅由不超过 �k 字符 * 组成的非空字符串(以下两条规则中的 S 均为此含义);
  2. 如果字符串 A 和 B 均为符合规范的超级括号序列,那么字符串 ABASB 均为符合规范的超级括号序列,其中 AB 表示把字符串 A 和字符串 B 拼接在一起形成的字符串;
  3. 如果字符串 A 为符合规范的超级括号序列,那么字符串 (A)(SA)(AS) 均为符合规范的超级括号序列。
  4. 所有符合规范的超级括号序列均可通过上述 3 条规则得到。

例如,若 �=3k=3,则字符串 ((**()*(*))*)(***) 是符合规范的超级括号序列,但字符串 *()(*()*)((**))*)(****(*)) 均不是。特别地,空字符串也不被视为符合规范的超级括号序列。

现在给出一个长度为 �n 的超级括号序列,其中有一些位置的字符已经确定,另外一些位置的字符尚未确定(用 ? 表示)。小 w 希望能计算出:有多少种将所有尚未确定的字符一一确定的方法,使得得到的字符串是一个符合规范的超级括号序列?

可怜的小 c 并不会做这道题,于是只好请求你来帮忙。

输入格式

第一行,两个正整数 �,�n,k。

第二行,一个长度为 �n 且仅由 ()*? 构成的字符串 �S。

输出格式

输出一个非负整数表示答案对 109+7109+7 取模的结果。

输入数据 1

7 3
(*??*??

Copy

输出数据 1

5

Copy

输入数据 2

10 2
???(*??(?)

Copy

输出数据 2

19

Copy

输入数据 3

见文件中的 bracket3.in

Copy

输出数据 3

见文件中的 bracket3.ans

Copy

输入数据 4

见文件中的 bracket4.in

Copy

输出数据 4

见文件中的 bracket4.ans

Copy

提示

【样例解释 #1】

如下几种方案是符合规范的:

(**)*()
(**(*))
(*(**))
(*)**()
(*)(**)

Copy

数据范围与约定

测试点编号�≤n≤特殊性质
1∼31∼31515
4∼84∼84040
9∼139∼13100100
14∼1514∼15500500�S 串中仅含有字符 ?
16∼2016∼20

对于 100%100% 的数据,1≤�≤�≤5001≤k≤n≤500。

CSP-S 2021 第二题

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=5e2+10,MOD=1e9+7;
inline int read()
{
    int s=0,w=1;
    char ch=getchar();
    while(ch<'0'||ch>'9') { if(ch=='-') w*=-1; ch=getchar(); }
    while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
    return s*w; 
}
int n,k;
int g[N][N],f[N][N],dp[N][N][2];
char arr[N];
inline bool check(int l,int r){
    if(arr[l]=='('&&arr[r]==')') return true;
    if(arr[l]=='('&&arr[r]=='?') return true;
    if(arr[l]=='?'&&arr[r]==')') return true;
    if(arr[l]=='?'&&arr[r]=='?') return true;
    return false;
}
signed main()
{
//  freopen("bracket.in","r",stdin);
//  freopen("bracket.out","w",stdout);
    n=read(),k=read();
    cin>>arr+1;
    for(int l=1;l<=n;l++){
        if(arr[l]!='('&&arr[l]!='?') continue;
        int cnt=0;
        for(int r=l+1;r<=n;r++){
            if(arr[r]==')'||arr[r]=='?') dp[l][r][0]=1;
            if(arr[r]!='*'&&arr[r]!='?') break;
            cnt++; if(cnt>k) break;
        }
    }
    for(register int len=2;len<=n;len++){ //枚举区间长度 
        for(register int l=1;l<=n-len+1;l++){ //枚举左端点 
            int r=l+len-1; //右端点
            int cnt=0;
            for(register int x=l;x<r;x++){
                if(arr[x]!='*'&&arr[x]!='?') break;
                cnt++; if(cnt>k) break;
                f[l][r]=(f[l][r]+(dp[x+1][r][0]+dp[x+1][r][1])%MOD)%MOD;
            }
            cnt=0;
            for(register int x=r;x>l;x--){
                if(arr[x]!='*'&&arr[x]!='?') break;
                cnt++; if(cnt>k) break;
                g[l][r]=(g[l][r]+(dp[l][x-1][0]+dp[l][x-1][1])%MOD)%MOD;
            }
            for(register int x=l;x<r;x++)
                dp[l][r][1]=(dp[l][r][1]+dp[l][x][0]*((f[x+1][r]+(dp[x+1][r][0]+dp[x+1][r][1])%MOD)%MOD)%MOD)%MOD;
            if(check(l,r)){ //端点可以为()
                dp[l][r][0]=((dp[l][r][0]+dp[l+1][r-1][0])%MOD+dp[l+1][r-1][1])%MOD;
                dp[l][r][0]=(dp[l][r][0]+f[l+1][r-1])%MOD;
                dp[l][r][0]=(dp[l][r][0]+g[l+1][r-1])%MOD;
            }

        }
    }
    printf("%lld\n",(dp[1][n][0]+dp[1][n][1])%MOD);
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值