MNSIT手写数据集 CNN 卷积神经网络识别

MNSIT手写数据集 CNN 卷积神经网络识别

本实验代码基于斯坦福CS231n的Assignmnt 2.
实验开发环境是Windows 10 + Python 3.7 + Pychram.

基本概述

三层卷积神经网络模型

INPUT -> CONV -> ReLU -> POOL -> FC -> ReLU -> FC -> OUT

卷积神经网络模型同样来自与CS231n的授课内容。

数据集信息 - MNIST

灰度图片数据集,每张图片的结构是 [28x28x1]。其中长宽均为 28,且仅有1个色彩通道。

数据集默认 60000张图片作训练,10000张作测试。

部分手写数据如下所示:
Examples of MNIST

更多数据集的信息请参考:http://yann.lecun.com/exdb/mnist/

程序文档申明

程序可从Github下载:https://github.com/rrryan2016/MNIST-Handwritten-Digit-Recognition

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值