> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。> 目标:了解什么是记忆化搜索,并且掌握记忆化搜索算法。
> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!
> 专栏选自:递归、搜索与回溯算法_დ旧言~的博客-CSDN博客
> 望小伙伴们点赞👍收藏✨加关注哟💕💕
一、算法讲解
记忆化搜索(Memoization Search):
是一种通过存储已经遍历过的状态信息,从而避免对同一状态重复遍历的搜索算法。
主要特点和应用场景包括:
- 避免重复计算: 记忆化搜索算法通过缓存已经计算过的结果,以避免对相同输入进行重复计算。这在递归算法中特别有用,因为递归往往会导致相同的子问题被反复解决。
- 提高效率: 通过保存中间计算结果,记忆化搜索算法能够大幅减少算法的时间复杂度,从指数级别降低到多项式级别。
动态规划:
记忆化搜索在动态规划中经常被使用。动态规划是一种解决优化问题的方法,通常包含递归和子问题重叠的特点。记忆化搜索能够避免重复计算,使得动态规划算法更加高效。
递归算法优化:
记忆化搜索主要用于优化递归算法。在递归调用中,如果存在相同的输入参数,记忆化搜索算法将直接返回已经计算过的结果,而不是重新执行计算。
应用于搜索问题:
记忆化搜索不仅用于动态规划,还可以应用于搜索问题,特别是深度优先搜索中的状态记忆。
二、算法习题
2.1 第一题
题目描述:
算法思路:
暴搜:
- 递归含义:给 dfs ⼀个使命,给他⼀个数 n ,返回第 n 个斐波那契数的值;
- 函数体:斐波那契数的递推公式;
- 递归出⼝:当 n == 0 或者 n == 1 时,不⽤套公式。
记忆化搜索:
- 加上⼀个备忘录;
- 每次进⼊递归的时候,去备忘录⾥⾯看看;
- 每次返回的时候,将结果加⼊到备忘录⾥⾯。
动态规划:
- 递归含义 -> 状态表⽰;
- 函数体 -> 状态转移⽅程;
- 递归出⼝ -> 初始化。
代码呈现:
class Solution {
public:
int memo[31]; // memory 备忘录
int dp[31];
int fib(int n)
{
// 动态规划
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++)
dp[i] = dp[i - 1] + dp[i - 2];
return dp[n];
}
// 记忆化搜索
int dfs(int n)
{
if (memo[n] != -1)
return memo[n]; // 直接去备忘录⾥⾯拿值
if (n == 0 || n == 1) {
memo[n] = n; // 记录到备忘录⾥⾯
return n;
}
memo[n] = dfs(n - 1) + dfs(n - 2); // 记录到备忘录⾥⾯
return memo[n];
}
};
2.2 第二题
题目描述:
算法思路:
暴搜:
- 递归含义:给 dfs ⼀个使命,给他⼀个下标,返回从 [0, 0] 位置⾛到 [i, j] 位置⼀共有多少种⽅法;
- 函数体:只要知道到达上⾯位置的⽅法数以及到达左边位置的⽅法数,然后累加起来即可;
- 递归出⼝:当下标越界的时候返回 0 ;当位于起点的时候,返回 1 。
记忆化搜索:
- 加上⼀个备忘录;
- 每次进⼊递归的时候,去备忘录⾥⾯看看;
- 每次返回的时候,将结果加⼊到备忘录⾥⾯。
动态规划:
- 递归含义 -> 状态表⽰;
- 函数体 -> 状态转移⽅程;
- 递归出⼝ -> 初始化。
代码呈现:
class Solution {
public:
int uniquePaths(int m, int n)
{
// 动态规划
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
dp[1][1] = 1;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
{
if (i == 1 && j == 1)
continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
return dp[m][n];
// 记忆化搜索
// vector<vector<int>> memo(m + 1, vector<int>(n + 1));
// return dfs(m, n, memo);
}
int dfs(int i, int j, vector<vector<int>>& memo)
{
if (memo[i][j] != 0)
return memo[i][j];
if (i == 0 || j == 0)
return 0;
if (i == 1 && j == 1)
{
memo[i][j] = 1;
return 1;
}
memo[i][j] = dfs(i - 1, j, memo) + dfs(i, j - 1, memo);
return memo[i][j];
}
};
2.3 第三题
题目描述:
算法思路:
暴搜:
- 递归含义:给 dfs ⼀个使命,给他⼀个数 i ,返回以 i 位置为起点的最⻓递增⼦序列的⻓度;
- 函数体:遍历 i 后⾯的所有位置,看看谁能加到 i 这个元素的后⾯。统计所有情况下的最⼤值。
- 递归出⼝:因为我们是判断之后再进⼊递归的,因此没有出⼝~
记忆化搜索:
- 加上⼀个备忘录;
- 每次进⼊递归的时候,去备忘录⾥⾯看看;
- 每次返回的时候,将结果加⼊到备忘录⾥⾯。
动态规划:
- 递归含义 -> 状态表⽰;
- 函数体 -> 状态转移⽅程;
- 递归出⼝ -> 初始化。
代码呈现:
class Solution {
public:
int lengthOfLIS(vector<int>& nums)
{
// 动态规划
int n = nums.size();
vector<int> dp(n, 1);
int ret = 0;
// 填表顺序:从后往前
for (int i = n - 1; i >= 0; i--)
{
for (int j = i + 1; j < n; j++)
{
if (nums[j] > nums[i])
dp[i] = max(dp[i], dp[j] + 1);
}
ret = max(ret, dp[i]);
}
return ret;
// 记忆化搜索
//
// vector<int> memo(n);
// int ret = 0;
// for(int i = 0; i < n; i++)
// ret = max(ret, dfs(i, nums, memo));
// return ret;
}
int dfs(int pos, vector<int>& nums, vector<int>& memo)
{
if (memo[pos] != 0)
return memo[pos];
int ret = 1;
for (int i = pos + 1; i < nums.size(); i++)
{
if (nums[i] > nums[pos])
ret = max(ret, dfs(i, nums, memo) + 1);
}
memo[pos] = ret;
return ret;
}
};
2.4 第四题
题目描述:
算法思路:
暴搜:
- 递归含义:给 dfs ⼀个使命,给他⼀个区间 [left, right] ,返回在这个区间上能完胜的最⼩费⽤;
- 函数体:选择 [left, right] 区间上的任意⼀个数作为头结点,然后递归分析左右⼦树。求出所有情况下的最⼩值;
- 递归出⼝:当 left >= right 的时候,直接返回 0 。
记忆化搜索:
- 加上⼀个备忘录;
- 每次进⼊递归的时候,去备忘录⾥⾯看看;
- 每次返回的时候,将结果加⼊到备忘录⾥⾯。
代码呈现:
class Solution {
int memo[201][201];
public:
int getMoneyAmount(int n) { return dfs(1, n); }
int dfs(int left, int right)
{
if (left >= right)
return 0;
if (memo[left][right] != 0)
return memo[left][right];
int ret = INT_MAX;
for (int head = left; head <= right; head++) // 选择头结点
{
int x = dfs(left, head - 1);
int y = dfs(head + 1, right);
ret = min(ret, head + max(x, y));
}
memo[left][right] = ret;
return ret;
}
};
2.5 第五题
题目描述:
算法思路:
暴搜:
- 递归含义:给 dfs ⼀个使命,给他⼀个下标 [i, j] ,返回从这个位置开始的最⻓递增路径的⻓度;
- 函数体:上下左右四个⽅向瞅⼀瞅,哪⾥能过去就过去,统计四个⽅向上的最⼤⻓度;
- 递归出⼝:因为我们是先判断再进⼊递归,因此没有出⼝~
记忆化搜索:
- 加上⼀个备忘录;
- 每次进⼊递归的时候,去备忘录⾥⾯看看;
- 每次返回的时候,将结果加⼊到备忘录⾥⾯。
代码呈现:
class Solution {
int m, n;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
int memo[201][201];
public:
int longestIncreasingPath(vector<vector<int>>& matrix)
{
int ret = 0;
m = matrix.size(), n = matrix[0].size();
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
ret = max(ret, dfs(matrix, i, j));
return ret;
}
int dfs(vector<vector<int>>& matrix, int i, int j)
{
if (memo[i][j] != 0)
return memo[i][j];
int ret = 1;
for (int k = 0; k < 4; k++)
{
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j])
ret = max(ret, dfs(matrix, x, y) + 1);
}
memo[i][j] = ret;
return ret;
}
};
三、结束语
今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。