> 作者:დ旧言~
> 座右铭:读不在三更五鼓,功只怕一曝十寒。> 目标:掌握 数量关系 基本题型,并能运用到例题中。
> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!
> 专栏选自:行测基础知识_დ旧言~的博客-CSDN博客
> 望小伙伴们点赞👍收藏✨加关注哟💕💕
一、代入排除法
解题思路:
- 通过题目的题型和选项信息判断题目是否适用代入排除法。
- 使用奇偶特性、尾数特性、倍数特性排除选项。
- 根据题目问法选择优先代入的选项。
应用环境:
- 特定题型:常用于年龄、余数、不定方程、多位数等题型中。
- 选项信息充分:选项信息多,一般涉及多个数据,即问题所求数据较多,如选现为组数时。
- 剩二代一:排除后只剩两项时,只需再代入一项。
使用规则:
方法:优先排除,排除不了再代入。
怎么排除:奇偶特性、尾数特性、倍数特性,其中,奇偶特性基础运算法则如下:
- 奇数士奇数=偶数,偶数士偶数=偶数,奇数士偶数=奇数;即“同偶异奇”。
- 奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数;即“有偶则偶,无偶为奇。
怎么代入:
- 简单代入:结合选项选取方便计算的选项优先代入。
- 最值代入:若题目问最大/最小,结合题型特征可以使用代入排除法解题,则从选项最大/最小项代起。
- 居中代入:若不具备上述特征,选项呈递增趋势,可优先代入数值居中的选项做尝试。
举个栗子:
二、倍数特性法
解题思路:
- 通过题干的文字信息、数据信息以及整数单位判断题目是否适用倍教特性法。
- 提炼出判断数据需要被哪个或哪几个数整除。
- 排除不符合倍数特性的选项,并将剩余选项代入求解。
2.1、整除法
应用环境:
整除定义:两个整数a、b,如果α÷b,商为整数,且余数为零,我们就说α能被b整除(或者说能整除a)。整数环境下,可优先考虑找寻题干中的倍数关系,排除错误答案/锁定数值范围。
解题方法:
判定一个数是否能被2”(或者5”)整除,看该数字的末n位即可:
- 一个数能被2(或者5)整除,当且仅当末一位数字能被2(或者5)整除。
- 一个数能被4(或者25)整除,当且仅当末两位数字能被4(或者25)整除。
- 一个数能被8(或者125)整除,当且仅当末三位数字能被8(或者125)整除。
判定一个数是否能被3(或者9)整除,看其各位数字之和是否能被3(或者9)整除即可。
判定一个数是否能被一个合数整除,首先将该合数拆成两个互质数相乘的形式,再做判断。(公约数只有1的两个整数为互质整数)
- 判定一个数是否能被15整除,15=3×5,则可转为判定该数是否可同时被3和5整除。
2.2、余数型
应用环境:
存在答案 = bx + c 的形式(b、x、c 均为整数)
解题方法:
若答案 = bx + c ,则答案 -c 或 +(b-c) 是 b 的倍数。
2.3、比例型
应用环境:
出现比例,百分比,分数,倍数,优先考虑倍数特性。
解题方法:
将比例数化为最简分数(最简分数:分子与分母互质)。
三、方程法
解题思路:
- 设出合适的未知数。
- 找出题目中的等量关系并列出方程。
- 求解方程。
3.1、普通方程
考点精讲:
方程法适用于题干条件等量关系明显的题目中,基本思路为:设→列→解。
设未知数的方法:
- 求什么设什么(直接设)。
- 设小不设大(避免分数)。
- 设中间量(减少未知数个数)。
- 设比例数(避免分数)。
列方程(寻找等量关系)的方法:
- 出现总和。
- 出现“比”“是”“多”“少”等表示关系的字眼。
- 出现分号.
- 其他隐藏前后的不变量。
解方程的方法:
通过消元、移项、合并同类项、系数化为1的方式解方程。
举个栗子:
3.2、不定方程
不定方程是未知数的个数大于独立方程个数的方程。在求解过程中,必须借助其他限制条件,而不能直接求解。可以分析奇假、倍数、尾数等数字特性,排除错误选项。
- 系数一奇一偶时,考虑奇偶特性。
- 系数与常数有公因子时,考虑倍数特性。
- 系数的尾数是0或5时,考虑尾数特性。
举个栗子:
四、工程问题
解题思路:
- 分析题目类型。判断题目是给完工时间型、给效率比例型还是给具体单位型。
- 灵活运用相应的解题方法进行求解。
4.1、工程问题
应用环境:题干中直接或间接给出若干个完成工作所需的时间,未出现效率/效率比。
解题方法:按照“赋总量→求效率→问什么求什么”的步骤解题。
- 赋总量(完工时间的公倍数)。
- 算效率:效率=总量:时间。
- 根据工作过程列式计算。
举个栗子:
4.2、给效率比例型
应用环境:题干中直接或间接给出效率之间的比例关系。(甲:乙=2:1)
解题方法:按照“赋效率→(求总量)→问什么求什么”的步骤解题。
- 赋效率(满足比例即可)。
- 算总量:效率 x 时间 = 总量。
- 根据工作过程列式计算。
举个栗子:
4.3、给具体单位型
应用环境:给出工作总量、工作效率与工作时间中至少两个量的具体值或大小关系。
解题方法:结合公式,按照“设→列→解”的步骤解题。
- 设未知数。
- 找等量关系列方程。
- 解方程。
举个栗子:
五、行程问题
解题思路:
- 分析题目类型。判断题目考查的是普通行程还是相对行程,相对行程中还细分为直线相遇追及、环形相遇追及、多次相遇和流水行船。
- 应用相关公式求解。对不同类型的题目应用相应的公式和解题方法进行求解。
5.1、普通行程
火车过桥:
应用环境:火车过桥、火车过隧道、车队过桥。
公式:
- 火车过桥:路程=桥长+车身长。
- 火车完全在桥上:路程=桥长-车身长。
等距离平均速度:
应用环境:前一半路程、后一半路程;上下坡+往返;往返。
公式:
举个栗子:
5.2、相对行程
直线相遇:两人同时相向而行。
直线追及:同时同向而行。
环形相遇:
- 同点出发:相遇 1 次,路程和 = 1 圈。相遇 n 次,路程和 = n 圈
- 不同点出发:相遇 1 次,路程和 = 初始距离
环形追及:
- 同点出发:追上1次,路程差=1圈。追上n次,路程差 = n 圈
- 不同点出发:追上1次,路程差 = 初始距离
两端出发的多次相遇:
公式:第 n 次相遇,路程和 = ( 2n - 1 )× 距离 =速度和 × 时间
流水行船:
举个栗子:
六、经济利润问题
解题思路:
- 根据题干信息分析所需使用的基本公式。
- 将给定数据代入公式计算。
- 题干信息较复杂时可先列表格梳理信息,再根据问题使用方程法或赋值法进行计算。
- 存在分段计算时,需要先找到分段点,再分别进行计算。
6.1、基本公式
举个栗子:
6.2、分段计算
应用环境:不同区间内计费标准不同。(如水电费、出租车计费等,每段计费不等)
计算方法:先确定分段点,再根据各区间的计费标准分别计费。
举个栗子:
七、几何问题
解题思路:
- 根据题干信息分析所需使用的几何公式以及几何性质。
- 根据相关公式和性质找出等量关系。
- 使用方程法求解。
7.1、常考公式
正方体、长方形的表面积及体积:
圆的周长及面积:
圆柱、圆锥的表面积及体积:
举个栗子:
7.2、常考性质
直角三角形:
勾股定理:a²+b²=c
特殊角三边关系:
- 含30°角的直角三角形三边关系为1:3:2
- 含45°角的直角三角形三边关系为1:1:根号二
三角形:
- 高相同,面积与底成正比。
- 底相同,面积与高成正比。
几何缩放性质:一个几何图形,若其尺度变为原来的m倍
- 所有对应角度不发生改变。
- 所有对应长度变为原来的m倍。
- 所有对应面积变为原来的m的平方倍。
- 所有对应体积变为原来的m的立方倍。
举个栗子:
八、容斥问题
解题思路:
- 分析题目类型,判断题目是两集合容还是三集合容所。
- 分析所需使用的公式并应用相应公式和方法进行求解。
8.1、两集合容斥
题型识别:题干中出现A、B两个集合,且存在既符合A又符合B的部分。
解题方法:
- 公式法:总数 = A + B - 都满足的 + 都不满足的
- 画图法:题干描述比较复杂时,可画图辅助理解
举个栗子:
8.2、三集合容斥
题型识别:题干中出现 A、B 、C三个集合,且彼此间存在重复的部分。
公式:
①标准公式
- 特征:给出两两集合交叉的数值,既 ... 又 ...
- 方法:A + B + C - A∩B - B∩C - A∩C + A∩B∩C = 全 - 都不
②非标准公式
- 特征:给出(只)满足两个条件的数值。
- 方法:A + B + C - 满足两项 - 满足三项 × 2 = 全 - 都不
③画图法:题干描述比较复杂时,可画图辅助理解
举个栗子:
九、结束语
今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。