蓝桥杯第39阶梯的递归实现[JAVA]

问题分析:  看到这个问题首先想到的递归     定义一个方法 int  F(  int n  )  不考虑其具体实现  我们令其可以实现返回这道题的解

;   继续分析这道题的解集,有一点是可以确定的: 在解集中小明跨出的第一步有两种情况①第一步跨越两个阶梯②第一步跨越一个阶梯  那么 问题的规模得以减小 我们很容易得到公式:  F(n)=F(n-1)+F(n-2)   

接下来考虑递归的出口问题: 

当n=0这个问题不能被分解(原子问题)并得到一个解则 return 1;

当n<0这个问题无解则 return 0 .

可得到以下递归函数:

 int F(int n) {
	if(n==0) {
		return 1;
	}
	if(n<=0) {
		return 0;
	}
	return F(n-1)+F(n-2);
}

目前为止我们并没有将偶数步的要求考虑在内, 要在递归函数内解决这个问题显然F( ) 仅有一个参数是不够的   思考之后可以增加一个boolean类型的参数mark 表示步数的奇偶

每走一步(每一次递归调用)就将mark的值取反  我这里设置mark的初始值为false 那么显然就要求当n==0且mark=false时 我们就寻找到了问题的一个解 return 1, 否者 return 0 ; 

所以 改进后的方法 F () 为:

 int F(int n,boolean mark) {
	if(n==0&&mark==false) {
		return 1;
	}
	if(n<=0) {
		return 0;
	}
	return F(n-1,!mark)+F(n-2,!mark);
}

附上源码:

public class Main {
public static void main(String[] args) {
	
	boolean a = false;
	System.out.println(F(39,a));
	
}
public static int F(int n,boolean mark) {
	if(n==0&&mark==false) {
		return 1;
	}
	if(n<=0) {
		return 0;
	}
	return F(n-1,!mark)+F(n-2,!mark);
}
}

此递归的执行过程类似于二叉树的先序遍历 下图是转自博客:

 http://blog.csdn.net/qsyzb/article/details/18991233


已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页