给定一个有向图,每个点的出度都为1,稍微画一下就知道图的特征:一个森林,森林中每个树都含有一个有向环,环上挂着很多有向树。问题是询问两个点的最短距离。
三种情况:
1:两个点在两个子图中
2:两个点在一个子图中,但是不在一个子树上(暂且叫子树吧)
3:两个点在一个子图中,且在同一个子树上
观察图的形态,由于n个点n条边,且每个点出度为1,因此可以认为是一个森林,森林里每棵树都加了一条边形成了一个环,且环是根节点(可以认为缩点后没有出边,即没有父节点)。
显然两点属于不同树的时候不可达;因为图的特殊性,因此没有用强连通做,而是用了并查集判环,也便于给环上每个点标上相对位置。
如果两点在同一颗树上,如果不在根节点的同一分支,那么他们首先要走到环上,然后一个人不动另一个走(至于让a走还是b走要根据两点在环上的相对位置判断优弧和劣弧),如果在同一分支,那就是普通的树上两点间的路径。
如果没有那个环,那就是一个普通的森林中的LCA问题,但是由于缩点了,因此要增加一个虚拟根节点0,把所有环上的点可做是森林中子树的根节点,虚拟根节点向所有树的根节点连边,然后做LCA,如果发现ab两点之间LCA为0,则判断两点是否在一颗子树中,如果不在和不可达,如果在则判优弧和劣弧;如果不等于0,那就等同于一棵树的LCA,可以直接确定两点间的最短距离。
#include <iostream>
#include <vector>
#include <cmath>
#include <cstdio>
using namespace std;
struct node{
int x,y;
node(){}
node(int _x,int _y):x(_x),y(_y){}
};
struct NODE{
int set[500010];
void init(int n){
int i;
for(i=1;i<=n;i++) set[i]=i;
}
int find(int x){
if(set[x]!=x) set[x]=find(set[x]);
return set[x];
}
};
const int N=500010;
NODE a,b;
int n,m,pre[N],root[N],dep[N],lca[N],circle[N];
vector<int> edges[N];
vector<node> query[N];
int isroot[N],x[N],y[N];
int visit[N],flag[N];
void InPut(){
int i,p,q;
a.init(n);
for(i=1;i<=n;i++){
edges[i].clear();
query[i].clear();
}
for(i=1;i<=n;i++){
scanf("%d",&pre[i]);
edges[pre[i]].push_back(i);
p=a.find(i);
q=a.find(pre[i]);
a.set[p]=q;
}
for(i=0;i<m;i++){
scanf("%d%d",&x[i],&y[i]);
query[x[i]].push_back(node(y[i],i));
query[y[i]].push_back(node(x[i],i));
}
}
void DFS(int u,int depth,int Root){
int i,v,x,y;
dep[u]=depth;
root[u]=Root;
for(i=0;i<edges[u].size();i++){
v=edges[u][i];
if(isroot[v]!=-1||v==u) continue;
DFS(v,depth+1,Root);
b.set[v]=u;
}
visit[u]=1;
for(i=0;i<query[u].size();i++) {
x=query[u][i].x;
y=query[u][i].y;
if(visit[x]&&root[u]==root[x])
lca[y]=b.find(x);
}
}
void OutPut()
{
int i,k,u,v,rootX,rootY,size,X,Y,A,B;
for(i=0;i<m;i++)
{
if(a.find(x[i])!=a.find(y[i]))
{
puts("-1 -1");
continue;
}
if(root[x[i]]==root[y[i]])
{
k=lca[i];
printf("%d %d\n",dep[x[i]]-dep[k],dep[y[i]]-dep[k]);
continue;
}
u=dep[x[i]];
v=dep[y[i]];
rootX=root[x[i]];
rootY=root[y[i]];
size=circle[a.find(rootX)];
X=(isroot[rootY]-isroot[rootX]+size)%size;
Y=(isroot[rootX]-isroot[rootY]+size)%size;
if(max(u+X,v)<max(u,v+Y)) A=u+X,B=v;
else if(max(u+X,v)>max(u,v+Y)) A=u,B=v+Y;
else if(min(u+X,v)<min(u,v+Y)) A=u+X,B=v;
else if(min(u+X,v)>min(u,v+Y)) A=u,B=v+Y;
else A=u+X,B=v;
printf("%d %d\n",A,B);
}
}
int main(){
while(scanf("%d%d",&n,&m)!=-1)
{
InPut();
int i,j,k,num;
memset(isroot,-1,sizeof(isroot));
memset(flag,0,sizeof(flag));
for(i=1;i<=n;i++) if(a.set[i]==i)
{
j=i;
while(1)
{
if(flag[j]) break;
flag[j]=1;
j=pre[j];
}
num=0;
isroot[j]=num++;
for(k=pre[j];k!=j;k=pre[k]) isroot[k]=num++;
circle[i]=num;
}
memset(lca, -1, sizeof(lca));
memset(visit, 0, sizeof(visit));
b.init(n);
for(i = 1; i <= n; i ++) if(isroot[i] != -1) DFS(i, 0, i);
OutPut();
}
}