六个人传一个球,每两个人之间最多传一次,最多进行多少次传球

题目如标题

小学三年级ACM-ICPC考前辅导班?后浪打人了

在这里插入图片描述

10秒出答案,5+4+3+2+1 = 15次,答案错,重读题目,再来

在这里插入图片描述

背景:传球,球传到哪就是哪,不可回头
限制:每两个人之间务必只能传一次

在这里插入图片描述

类似一笔画问题

在这里插入图片描述

在这里插入图片描述
(5 x 2 + 4 x 4)/ 2 = 13次
除了两个灰色的点有5条线,剩余点只有4条线,除2因为是无向图,而每条边被计算了两次。

继续找规律,题目描述为“n个人”呢

在这里插入图片描述

考虑n分奇数和偶数

在这里插入图片描述

本题是偶数,规律总结为 2 ( n − 1 ) + ( n − 2 ) 2 2 \frac{2(n-1) + (n-2)^2}{2} 22(n1)+(n2)2
化简之后为 n ( n − 2 ) 2 + 1 \frac{n(n-2)}{2} + 1 2n(n2)+1
奇数呢?

在这里插入图片描述

答案为 n ( n − 2 ) 2 \frac{n(n-2)}{2} 2n(n2)
在解决传球游戏的问题时,你可以考虑使用两种常见的优化策略,例如广度优先搜索(BFS)和动态规划(DP)。以下是针对这两个算法的简要说明: 1. **广度优先搜索 (BFS)**: - 算法难度级别:入门到中级,对于熟悉图形算法的学生来说相对容易理解。 - 时间复杂度:在传球游戏中,如果树状结构不是太深(深度不大于N),BFS通常有O(N+M)的时间复杂度,其中N是节点数,M是边数。这是因为遍历每层都需要一次,而最坏的情况下,可能是所有节点都位于一层。 - 库:主要依赖于标准库中的队列数据结构,如`std::queue`,以及可能用于表示图的数据结构如邻接表。 ```cpp #include <iostream> #include <queue> // 使用邻接列表或其他数据结构存储传球图 std::vector<int> graph[N]; bool bfs(int start, int end) { std::queue<int> q; q.push(start); visited[start] = true; while (!q.empty()) { int node = q.front(); q.pop(); if (node == end) return true; // 找到了目标 for (int neighbor : graph[node]) { if (!visited[neighbor]) { visited[neighbor] = true; q.push(neighbor); } } } return false; } ``` 2. **动态规划 (DP)**: - 算法难度级别:中级到高级,涉及状态转移方程和递推思想。 - 时间复杂度:如果你将传球看作是从一个手中递给另一个的序列决策问题,那么可以使用二维数组记录状态,时间复杂度是O(N^2),N是传球次数。更高效的解法可能通过记忆化搜索降低至O(N log N)或更低。 - 库:主要依赖于基本的数值计算和内存管理,不需要特定的库。 ```cpp bool dp[100][100]; // 假设最多100次传球 int solve(int player, int target, int passes) { if (passes == 0 || dp[player][target] != -1) return dp[player][target]; // 动态规划核心部分 for (int i = 1; i <= passes; ++i) { if (bfs(player, i)) { // 判断能否通过i次传球达到target dp[player][target] |= solve(i, target, passes - i); } } return dp[player][target]; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值