基于机器学习逻辑回归对心脏病数据的危险因素探索

本文澄清了关于机器学习中逻辑回归的常见误解,强调其不仅是一种分类算法,还能通过系数大小对危险因素进行排序,尤其适用于医学研究。同时,讨论了系数大小是否直接反映特征影响程度的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考
本文会提供代码

误解一:机器学习-逻辑回归

以为是单纯的分类算法,但是可以根据系数的大小,进行危险因素的排序,医学研究应用比较多
其实就是简单的,y = a 1 a_{1} a1 * x 1 x_{1} x1 + a 2 a_{2} a2 * x 2 x_{2} x2 + a 3 a_{3} a3 * x 3 x_{3} x3 + . . . + a n a_{n} an * x n x_{n} xn
x 1 x_{1} x1 增加 1,那么y就会增加 a 1 a_{1} a1的大小,所以系数的绝对值大小可以对危险因素排序

误解二:系数的大小真的就是影响 程度的大小???

可以和GBDT、RF特征筛选进行结果比对,到时候再更新此文

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值