Codeforces Round #484 (Div. 2) C. Cut 'em all!

C. Cut 'em all!
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You're given a tree with nn vertices.

Your task is to determine the maximum possible number of edges that can be removed in such a way that all the remaining connected components will have even size.

Input

The first line contains an integer nn (1n1051≤n≤105) denoting the size of the tree.

The next n1n−1 lines contain two integers uu, vv (1u,vn1≤u,v≤n) each, describing the vertices connected by the ii-th edge.

It's guaranteed that the given edges form a tree.

Output

Output a single integer kk — the maximum number of edges that can be removed to leave all connected components with even size, or 1−1 if it is impossible to remove edges in order to satisfy this property.

Examples
Input
Copy
4
2 4
4 1
3 1
Output
Copy
1
Input
Copy
3
1 2
1 3
Output
Copy
-1
Input
Copy
10
7 1
8 4
8 10
4 7
6 5
9 3
3 5
2 10
2 5
Output
Copy
4
Input
Copy
2
1 2
Output
Copy
0

Note

In the first example you can remove the edge between vertices 11 and 44. The graph after that will have two connected components with two vertices in each.

In the second example you can't remove edges in such a way that all components have even number of vertices, so the answer is 1−1.


题意:给你一棵树,删除一些边,使剩下的子树的节点数都为偶数。
分析: 深搜+回溯。
当n为奇数时:直接输出0.
当n为偶数时:先找到树的根节点,然后从根节点开始深搜,直至到达叶子节点,然后回溯统计每个节点的度,当发现某一结点的度为偶数时,ans++,并且从该节点返回上层节点是,返回0(因为该节点以下的都已经单独的成为一棵子树).
注意:输出时,ans要减1,因为最后剩余的偶数节点的子树不应该算。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include <queue>
#include <cmath>
#include <set>
#include <vector>
using namespace std;
bool vis[1000000];
vector<int> mp[1000000];
int ans=0;
int n;
int dfs(int x)
{
    int sum=1;
    int len=mp[x].size();
    for(int i=0; i<len; i++)
    {
        if(!vis[mp[x][i]])
        {
            vis[mp[x][i]]=true;
            sum+=dfs(mp[x][i]);
            vis[mp[x][i]]=false;
        }
    }
    if(sum%2==0)
    {
        ans++;
        return 0;
    }
    return sum;

}
void init()
{
    for(int i=1; i<n; i++)
    {
        int x;
        int y;
        scanf("%d%d",&x,&y);
        mp[x].push_back(y);
        mp[y].push_back(x);
        vis[y]=true;
    }
}
int main()
{
    while(~scanf("%d",&n))
    {
        memset(vis,false,sizeof(vis));
        init();
        ans=0;
        int start;
        for(int i=1; i<=n; i++)
        {
            if(!vis[i])
            {
                start=i;
                break;
            }
        }
        memset(vis,false,sizeof(vis));
        vis[start]=true;
        dfs(start);
        if(n%2)
            printf("-1\n");
        else
            printf("%d\n",ans-1);
        for(int i=1; i<=n; i++)
            mp[i].clear();
    }
    return 0;
}
/*
4
2 4
4 1
3 1
3
1 2
1 3
10
7 1
8 4
8 10
4 7
6 5
9 3
3 5
2 10
2 5
2
1 2
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值