Gift Hunting
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 349 Accepted Submission(s): 120
Problem Description
After winning two coupons for the largest shopping mart in your city, you can't wait inviting your girlfriend for gift hunting. Having inspected hundreds of kinds of souvenirs, toys and cosmetics, you finally narrowed down the candidate list to only n gifts, numbered 1 to n . Each gift has a happiness value that measures how happy your girlfriend would be, if you get this gift for her. Some of them are special - you must get it for your girlfriend (note that whether a gift is special has nothing to do with its happiness value).
Coupon 1 can be used to buy gifts with total price not greater than V 1 (RMB). Like most other coupons, you can’t get any money back if the total price is strictly smaller than V 1. Coupon 2 is almost the same, except that it’s worth V 2. Coupons should be used separately. That means you cannot combine them into a super-coupon that’s worth V 1+V 2. You have to divide the gifts you choose into two part, one uses coupon 1, the other uses coupon 2.
It is your girlfriend's birthday today. According to the rules of the mart, she can take one (only one) gift for FREE! Here comes your challenge: how to make your girlfriend as happy as possible?
Input
There will be at most 20 test cases. Each case begins with 3 integers V 1, V 2 and n (1 <= V 1 <= 500, 1 <= V 2 <= 50, 1 <= n <= 300), the values of coupon 1 and coupon 2 respectively, and the number of candidate gifts. Each of the following n lines describes a gift with 3 integers: P , H and S , where P is the price, H is the happiness (1 <= P,H <= 1000), S =1 if and only if this is a special gift - you must buy it (or get it for free). Otherwise S =0. The last test case is followed by V 1 = V 2 = n = 0, which should not be processed.
Output
For each test case, print the case number and the maximal total happiness of your girlfriend. If you can't finish the task, i.e. you are not able to buy all special gifts even with the 1-FREE bonus, the happiness is -1 (negative happiness means she's unhappy). Print a blank line after the output of each test case.
Sample Input
3 2 4
3 10 1
2 10 0
5 100 0
5 80 0
3 2 4
3 10 1
2 10 0
5 100 0
5 80 1
0 0 0
Sample Output
Case 1: 120
Case 2: 100
动态规划 ,01 背包的进化版 , 变成了 2 个背包 , 同时还增加了必拿的物品 .
设 res[k][i][j][x], 在前 k 个物品当中 , 当 x=0 时 , 表示在第一张购物卷为 i 元 , 第二张购物卷为 j 元 , 并且还没有免费拿一个物品的时候能获得的最大 happy 值 , 当 x=1 时表示免费拿了一个物品时的最大 happy 值 .
则转移方程就是 :
res[k][i][j][1]=max(res[k-1][i][j][0]+v[k],res[k-1][i-p[k]][j][1]+v[k],res[k-1][i][j-p[k]][1]+v[k])
res[k][i][j][0]=max(res[k-1][i][j][0],res[k-1][i-p[k]][j][0]+v[k],res[k-1][i][j-p[k]][0]+v[k])
当然 , 在这里必须优先考虑拿必拿的物品 , 而且在状态转移的时候也要注意 ,res[k][i][j][0] 的子状态 res[k-1][i-p[k]][j][1]+v[k], res[k-1][i][j-p[k]][1] 和 res[k][i][j][1] 的子状态 ,res[k-1][i-p[k]][j][0],res[k-1][i][j-p[k]][0] 都要满足已经拿到所有必拿的物品的情况下才能纳入状态转移的范围 .
代码如下 :