HDU3236 01背包增强版

Gift Hunting

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 349    Accepted Submission(s): 120

Problem Description

After winning two coupons for the largest shopping mart in your city, you can't wait inviting your girlfriend for gift hunting. Having inspected hundreds of kinds of souvenirs, toys and cosmetics, you finally narrowed down the candidate list to only n gifts, numbered 1 to n . Each gift has a happiness value that measures how happy your girlfriend would be, if you get this gift for her. Some of them are special - you must get it for your girlfriend (note that whether a gift is special has nothing to do with its happiness value).

Coupon 1 can be used to buy gifts with total price not greater than V 1 (RMB). Like most other coupons, you can’t get any money back if the total price is strictly smaller than V 1. Coupon 2 is almost the same, except that it’s worth V 2. Coupons should be used separately. That means you cannot combine them into a super-coupon that’s worth V 1+V 2. You have to divide the gifts you choose into two part, one uses coupon 1, the other uses coupon 2.

It is your girlfriend's birthday today. According to the rules of the mart, she can take one (only one) gift for FREE! Here comes your challenge: how to make your girlfriend as happy as possible?

 

 

Input

There will be at most 20 test cases. Each case begins with 3 integers V 1, V 2 and n (1 <= V 1 <= 500, 1 <= V 2 <= 50, 1 <= n <= 300), the values of coupon 1 and coupon 2 respectively, and the number of candidate gifts. Each of the following n lines describes a gift with 3 integers: P , H and S , where P is the price, H is the happiness (1 <= P,H <= 1000), S =1 if and only if this is a special gift - you must buy it (or get it for free). Otherwise S =0. The last test case is followed by V 1 = V 2 = n = 0, which should not be processed.

 

 

Output

For each test case, print the case number and the maximal total happiness of your girlfriend. If you can't finish the task, i.e. you are not able to buy all special gifts even with the 1-FREE bonus, the happiness is -1 (negative happiness means she's unhappy). Print a blank line after the output of each test case.

 

 

Sample Input

3 2 4

3 10 1

2 10 0

5 100 0

5 80 0

3 2 4

3 10 1

2 10 0

5 100 0

5 80 1

0 0 0

 

 

Sample Output

Case 1: 120

 

Case 2: 100

 

 

动态规划 ,01 背包的进化版 , 变成了 2 个背包 , 同时还增加了必拿的物品 .

res[k][i][j][x], 在前 k 个物品当中 , x=0 , 表示在第一张购物卷为 i , 第二张购物卷为 j , 并且还没有免费拿一个物品的时候能获得的最大 happy , x=1 时表示免费拿了一个物品时的最大 happy .

则转移方程就是 :

res[k][i][j][1]=max(res[k-1][i][j][0]+v[k],res[k-1][i-p[k]][j][1]+v[k],res[k-1][i][j-p[k]][1]+v[k])

res[k][i][j][0]=max(res[k-1][i][j][0],res[k-1][i-p[k]][j][0]+v[k],res[k-1][i][j-p[k]][0]+v[k])

当然 , 在这里必须优先考虑拿必拿的物品 , 而且在状态转移的时候也要注意 ,res[k][i][j][0] 的子状态 res[k-1][i-p[k]][j][1]+v[k], res[k-1][i][j-p[k]][1] res[k][i][j][1] 的子状态 ,res[k-1][i-p[k]][j][0],res[k-1][i][j-p[k]][0] 都要满足已经拿到所有必拿的物品的情况下才能纳入状态转移的范围 .

 

代码如下 :


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值