第三届蓝桥杯预赛c++b组

1.微生物增值

    假设有两种微生物 X 和 Y
    X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍)。
    一个新出生的X,半分钟之后吃掉1个Y,并且,从此开始,每隔1分钟吃1个Y。
    现在已知有新出生的 X=10, Y=89,求60分钟后Y的数目。
    如果X=10,Y=90  呢?
    本题的要求就是写出这两种初始条件下,60分钟后Y的数目。
    题目的结果令你震惊吗?这不是简单的数字游戏!真实的生物圈有着同样脆弱的性质!也许因为你消灭的那只 Y 就是最终导致 Y 种群灭绝的最后一根稻草!
    
    请忍住悲伤,把答案写在“解答.txt”中,不要写在这里!

分析:

        
时间t0.511.522.533.5
x的数目     *2 
y的数目-x -x*2-x -x

由表格可以看出,

x的数目变化:时间在3s的倍数时,数目翻倍。

y的数目变化:时间在*.5 s时,数目减少x;2s的倍数时,数目翻倍。


代码:

#include<iostream>
#include<stdio.h>
using namespace std;

int main(){   
/*
     y-x     y-x      y-x   	y-x
  t  .5  1   1.5  2   2.5   3   3.5  ...
  x                         *2  
  y  -x      -x   *2  -x        -x

*/
	int x,y,t;
	while(~scanf("%d%d%d",&x,&y,&t)){
		int i;
		for(i=1;i<=t*2;i++){//  以半分钟为一个单位 
			if(i%6==0) x=x+x;	// x 3分钟繁殖一次 
			if(i%4==0) y=y+y;	// y 2分钟繁殖一次 
			if(i%2!=0) y=y-x;	// 0.5,1.5,2.5  分钟 y减少x 
			if(y<=0) { y=0; break; }// y数目<=0时,跳出循环 
		} 
		printf("%d\n",y);
	}
	return 0;
}


2.古堡算式

    
    福尔摩斯到某古堡探险,看到门上写着一个奇怪的算式:
    ABCDE * ? = EDCBA
    他对华生说:“ABCDE应该代表不同的数字,问号也代表某个数字!”
    华生:“我猜也是!”
    于是,两人沉默了好久,还是没有算出合适的结果来。
    请你利用计算机的优势,找到破解的答案。
    把 ABCDE 所代表的数字写出来。

    答案写在“解答.txt”中,不要写在这里! 

分析:

ABCDE * ? = EDCBA ?=1: ABCDE * ? = ABCDE , 所以 ?>=1 ?=2: ?=3: 12345 12345 50000 * 2 = 100000 ABCED 小于 50000

直接枚举。

代码:

#include<iostream>
#include<stdio.h>
using namespace std;
 
int main(){  

/*
ABCDE  *  ?  =  EDCBA
?=1:  ABCDE  *  ?  =  ABCDE  ,  所以 ?>=1 
?=2:
?=3:

12345           12345 
50000  *  2  =  100000
 
ABCED  小于 50000 


*/
	int i,j,k;
	int i1,i2,i3,i4,i5;
	for(i=10234;i<50000;i++){
		i1=i/10000;
		i2=(i/1000)%10;
		i3=(i/100)%10;
		i4=(i/10)%10;
		i5=i%10;
		if(i1==i2||i1==i3||i1==i4||i1==i5||i2==i3||i2==i4||i2==i5||i3==i4||i3==i5||i4==i5) continue; 
		j=i5*10000+i4*1000+i3*100+i2*10+i1;
		for(k=2;k<10;k++){
			if(i*k==j&&k!=i1&&k!=i2&&k!=i3&&k!=i4&&k!=i5){
				printf("%d * %d = %d\n",i,k,j);
				break;
			}
		}
	}
	return 0;
}


/* 答案代码,不懂 
#include<stdio.h>
int main(){
	int k,t1,t;
	for(k=10234;k<50000;k++){
		bool flag[10]={0};
		t=k;
		t1=0;
		while(t){
			if(flag[t%10]) break;
			flag[t%10]=true;
			t1=t1*10+t%10;
			t/=10;
		}
		if(t==0&&t1%k==0){
			printf("%d * %d = %d\n",k,t1/k,t1); 
		} 
	}
	return 0;
}
*/


3.比酒量
    有一群海盗(不多于20人),在船上比拼酒量。过程如下:打开一瓶酒,所有在场的人平分喝下,有几个人倒下了。再打开一瓶酒平分,又有倒下的,再次重复...... 直到开了第4瓶酒,坐着的已经所剩无几,海盗船长也在其中。当第4瓶酒平分喝下后,大家都倒下了。
    等船长醒来,发现海盗船搁浅了。他在航海日志中写到:“......昨天,我正好喝了一瓶.......奉劝大家,开船不喝酒,喝酒别开船......”
    请你根据这些信息,推断开始有多少人,每一轮喝下来还剩多少人。
    如果有多个可能的答案,请列出所有答案,每个答案占一行。
    格式是:人数,人数,...
    例如,有一种可能是:20,5,4,2,0

    答案写在“解答.txt”中,不要写在这里!

分析:

直接枚举。

代码:

#include<iostream>
#include<stdio.h>
using namespace std;

int main(){
	int i,j,k,l;
	double a1,a2,a3,a4;
	double sum;
	for(i=20;i>=4;i--){
		a1=1.0/i;
		for(j=i-1;j>=3;j--){
			a2=1.0/j;
			for(k=j-1;k>=2;k--){
				a3=1.0/k;
				for(l=k-1;l>=1;l--){
					a4=1.0/l;
					sum=a1+a2+a3+a4;
					if(sum-1>=0&&sum-1<0.00000001) printf("%d %d %d %d 0\n",i,j,k,l);
				}
			}
		}
	}
	return 0;
}


4.奇怪的比赛
    某电视台举办了低碳生活大奖赛。题目的计分规则相当奇怪:
    每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了则扣掉与题号相同的分数(选手必须回答问题,不回答按错误处理)。
    每位选手都有一个起步的分数为10分。
    某获胜选手最终得分刚好是100分,如果不让你看比赛过程,你能推断出他(她)哪个题目答对了,哪个题目答错了吗?
    如果把答对的记为1,答错的记为0,则10个题目的回答情况可以用仅含有1和0的串来表示。例如:0010110011 就是可能的情况。
    你的任务是算出所有可能情况。每个答案占一行。

    答案写在“解答.txt”中,不要写在这里!

分析:

枚举,递归求解。


代码:

#include<iostream>
#include<stdio.h>
using namespace std;

void f(char s[],int n,int score){
	if(n==11){
		if(score==100) printf("%s\n",s);
		return;
	}
	
	s[n-1]='0';
	f(s,n+1,score-n);
	
	s[n-1]='1';
	f(s,n+1,score+score);
}

int main(){
	char s[11];
	s[10]='\0';
	f(s,1,10);
	return 0;
}




5.转方阵


    对一个方阵转置,就是把原来的行号变列号,原来的列号变行号
    例如,如下的方阵:
 1  2  3  4
 5  6  7  8
 9 10 11 12
13 14 15 16
    转置后变为:
 1  5  9 13
 2  6 10 14
 3  7 11 15
 4  8 12 16
    但,如果是对该方阵顺时针旋转(不是转置),却是如下结果:
13  9  5  1
14 10  6  2
15 11  7  3
16 12  8  4
    下面的代码实现的功能就是要把一个方阵顺时针旋转。
void rotate(int* x, int rank)
{
int* y = (int*)malloc(___________________);  // 填空
for(int i=0; i<rank * rank; i++)
{
y[_________________________] = x[i];  // 填空
}
for(i=0; i<rank*rank; i++)
{
x[i] = y[i];
}
free(y);
}
int main(int argc, char* argv[])
{
int x[4][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16}};
int rank = 4;
rotate(&x[0][0], rank);
for(int i=0; i<rank; i++)
{
for(int j=0; j<rank; j++)
{
printf("%4d", x[i][j]);
}
printf("\n");
}
return 0;
}




请分析代码逻辑,并推测划线处的代码。
答案写在 “解答.txt” 文件中

注意:只写划线处应该填的内容,划线前后的内容不要抄写。

分析:

1.第一个空好填

2.第二个空,主要是表示出行和列来

/*
  0  1  2  3              12  8  4  0    
  4  5  6  7              13  9  5  1
  8  9  10 11             14  10 6  2
  12 13 14 15             15  11 7  3

行:i/4                   i%4  
列:i%4                   3-i/4


代码:

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
 
 
 
/*
  0  1  2  3              12  8  4  0    
  4  5  6  7              13  9  5  1
  8  9  10 11             14  10 6  2
  12 13 14 15             15  11 7  3

行:i/4                   i%4  
列:i%4                   3-i/4

*/
void rotate(int* x, int rank)
{
	int* y = (int*)malloc(rank*rank*sizeof(int));  // 填空

	for(int i=0; i<rank * rank; i++)
	{
		y[(i%rank)*rank + rank-1-i/rank] = x[i];  // 填空
	}

	for(int i=0; i<rank*rank; i++)
	{
		x[i] = y[i];
	}

	free(y);
}
 
int main(int argc, char* argv[])
{
	int x[4][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16}};
	int rank = 4;

	rotate(&x[0][0], rank);

	for(int i=0; i<rank; i++)
	{
		for(int j=0; j<rank; j++)
		{
			printf("%4d", x[i][j]);
		}
		printf("\n");
	}

	return 0;
}




6.大数乘法
    对于32位字长的机器,大约超过20亿,用int类型就无法表示了,我们可以选择int64类型,但无论怎样扩展,固定的整数类型总是有表达的极限!如果对超级大整数进行精确运算呢?一个简单的办法是:仅仅使用现有类型,但是把大整数的运算化解为若干小整数的运算,即所谓:“分块法”。
    如图【1.jpg】表示了分块乘法的原理。可以把大数分成多段(此处为2段)小数,然后用小数的多次运算组合表示一个大数。可以根据int的承载能力规定小块的大小,比如要把int分成2段,则小块可取10000为上限值。注意,小块在进行纵向累加后,需要进行进位校正。

    以下代码示意了分块乘法的原理(乘数、被乘数都分为2段)。
void bigmul(int x, int y, int r[])
{
int base = 10000;
int x2 = x / base;
int x1 = x % base; 
int y2 = y / base;
int y1 = y % base; 
int n1 = x1 * y1; 
int n2 = x1 * y2;
int n3 = x2 * y1;
int n4 = x2 * y2;
r[3] = n1 % base;
r[2] = n1 / base + n2 % base + n3 % base;
r[1] = ____________________________________________; // 填空
r[0] = n4 / base;

r[1] += _______________________;  // 填空
r[2] = r[2] % base;
r[0] += r[1] / base;
r[1] = r[1] % base;
}


int main(int argc, char* argv[])
{
int x[] = {0,0,0,0};
bigmul(87654321, 12345678, x);
printf("%d%d%d%d\n", x[0],x[1],x[2],x[3]);
return 0;
}


请分析代码逻辑,并推测划线处的代码。
答案写在 “解答.txt” 文件中
注意:只写划线处应该填的内容,划线前后的内容不要抄写。

分析:

直接见代码。

代码:

#include<iostream>
#include<stdio.h>
using namespace std;


void bigmul(int x, int y, int r[])
{
	int base = 10000;
	int x2 = x / base;
	int x1 = x % base; 
	int y2 = y / base;
	int y1 = y % base; 

	int n1 = x1 * y1; 
	int n2 = x1 * y2;
	int n3 = x2 * y1;
	int n4 = x2 * y2;

	r[3] = n1 % base;
	r[2] = n1 / base + n2 % base + n3 % base;
	r[1] = n2/base+n3/base+n4%base; // 填空
	r[0] = n4 / base;
	
	r[1] += r[2]/base;  // 填空
	r[2] = r[2] % base;
	r[0] += r[1] / base;
	r[1] = r[1] % base;
}


int main(int argc, char* argv[])
{
	int x[] = {0,0,0,0};

	bigmul(87654321, 12345678, x);

	printf("%d%d%d%d\n", x[0],x[1],x[2],x[3]);

	return 0;
}






7.放棋子

    今有 6 x 6 的棋盘格。其中某些格子已经预先放好了棋子。现在要再放上去一些,使得:每行每列都正好有3颗棋子。我们希望推算出所有可能的放法。下面的代码就实现了这个功能。
    初始数组中,“1”表示放有棋子,“0”表示空白。    
int N = 0;
bool CheckStoneNum(int x[][6])
{
for(int k=0; k<6; k++)
{
int NumRow = 0;
int NumCol = 0;
for(int i=0; i<6; i++)
{
if(x[k][i]) NumRow++;
if(x[i][k]) NumCol++;
}
if(_____________________) return false;  // 填空
}
return true;
}
int GetRowStoneNum(int x[][6], int r)
{
int sum = 0;
for(int i=0; i<6; i++) if(x[r][i]) sum++;
return sum;
}
int GetColStoneNum(int x[][6], int c)
{
int sum = 0;
for(int i=0; i<6; i++) if(x[i][c]) sum++;
return sum;
}
void show(int x[][6])
{
for(int i=0; i<6; i++)
{
for(int j=0; j<6; j++) printf("%2d", x[i][j]);
printf("\n");
}
printf("\n");
}
void f(int x[][6], int r, int c);
void GoNext(int x[][6],  int r,  int c)
{
if(c<6)
_______________________;   // 填空
else
f(x, r+1, 0);
}
void f(int x[][6], int r, int c)
{
if(r==6)
{
if(CheckStoneNum(x))
{
N++;
show(x);
}
return;
}
if(______________)  // 已经放有了棋子
{
GoNext(x,r,c);
return;
}

int rr = GetRowStoneNum(x,r);
int cc = GetColStoneNum(x,c);
if(cc>=3)  // 本列已满
GoNext(x,r,c);  
else if(rr>=3)  // 本行已满
f(x, r+1, 0);   
else
{
x[r][c] = 1;
GoNext(x,r,c);
x[r][c] = 0;

if(!(3-rr >= 6-c || 3-cc >= 6-r))  // 本行或本列严重缺子,则本格不能空着!
GoNext(x,r,c);  
}
}
int main(int argc, char* argv[])
{
int x[6][6] = {
{1,0,0,0,0,0},
{0,0,1,0,1,0},
{0,0,1,1,0,1},
{0,1,0,0,1,0},
{0,0,0,1,0,0},
{1,0,1,0,0,1}
};
f(x, 0, 0);

printf("%d\n", N);
return 0;
}


请分析代码逻辑,并推测划线处的代码。
答案写在 “解答.txt” 文件中

注意:只写划线处应该填的内容,划线前后的内容不要抄写。

分析:

直接见代码。


代码:

#include<iostream>
#include<stdio.h>
using namespace std;

int N = 0;

bool CheckStoneNum(int x[][6])
{
	for(int k=0; k<6; k++)
	{
		int NumRow = 0;
		int NumCol = 0;
		for(int i=0; i<6; i++)
		{
			if(x[k][i]) NumRow++;
			if(x[i][k]) NumCol++;
		}
		if(NumRow!=3||NumCol!=3) return false;  // 填空
	}
	return true;
}

int GetRowStoneNum(int x[][6], int r)
{
	int sum = 0;
	for(int i=0; i<6; i++) 	if(x[r][i]) sum++;
	return sum;
}

int GetColStoneNum(int x[][6], int c)
{
	int sum = 0;
	for(int i=0; i<6; i++) 	if(x[i][c]) sum++;
	return sum;
}

void show(int x[][6])
{
	for(int i=0; i<6; i++)
	{
		for(int j=0; j<6; j++) printf("%2d", x[i][j]);
		printf("\n");
	}
	printf("\n");
}

void f(int x[][6], int r, int c);

void GoNext(int x[][6],  int r,  int c)
{
	if(c<6)
		f(x,r,c+1);   // 填空
	else
		f(x, r+1, 0);
}

void f(int x[][6], int r, int c)
{
	if(r==6)
	{
		if(CheckStoneNum(x))
		{
			N++;
			show(x);
		}
		return;
	}

	if(x[r][c])  // 已经放有了棋子
	{
		GoNext(x,r,c);
		return;
	}
	
	int rr = GetRowStoneNum(x,r);
	int cc = GetColStoneNum(x,c);

	if(cc>=3)  // 本列已满
		GoNext(x,r,c);  
	else if(rr>=3)  // 本行已满
		f(x, r+1, 0);   
	else
	{
		x[r][c] = 1;
		GoNext(x,r,c);
		x[r][c] = 0;
		
		if(!(3-rr >= 6-c || 3-cc >= 6-r))  // 本行或本列严重缺子,则本格不能空着!
			GoNext(x,r,c);  
	}
}

int main(int argc, char* argv[])
{
	int x[6][6] = {
		{1,0,0,0,0,0},
		{0,0,1,0,1,0},
		{0,0,1,1,0,1},
		{0,1,0,0,1,0},
		{0,0,0,1,0,0},
		{1,0,1,0,0,1}
	};

	f(x, 0, 0);
	
	printf("%d\n", N);

	return 0;
}



8.密码发生器
    在对银行账户等重要权限设置密码的时候,我们常常遇到这样的烦恼:如果为了好记用生日吧,容易被破解,不安全;如果设置不好记的密码,又担心自己也会忘记;如果写在纸上,担心纸张被别人发现或弄丢了...
    这个程序的任务就是把一串拼音字母转换为6位数字(密码)。我们可以使用任何好记的拼音串(比如名字,王喜明,就写:wangximing)作为输入,程序输出6位数字。
    变换的过程如下:
    第一步. 把字符串6个一组折叠起来,比如wangximing则变为:
    wangxi
    ming 
    第二步. 把所有垂直在同一个位置的字符的ascii码值相加,得出6个数字,如上面的例子,则得出:
    228 202 220 206 120 105
    第三步. 再把每个数字“缩位”处理:就是把每个位的数字相加,得出的数字如果不是一位数字,就再缩位,直到变成一位数字为止。例如: 228 => 2+2+8=12 => 1+2=3
    上面的数字缩位后变为:344836, 这就是程序最终的输出结果!
    要求程序从标准输入接收数据,在标准输出上输出结果。
    输入格式为:第一行是一个整数n(<100),表示下边有多少输入行,接下来是n行字符串,就是等待变换的字符串。
    输出格式为:n行变换后的6位密码。
    例如,输入:
5
zhangfeng
wangximing
jiujingfazi
woaibeijingtiananmen
haohaoxuexi
    则输出:
772243
344836
297332
716652
875843
    注意:
    请仔细调试!您的程序只有能运行出正确结果的时候才有机会得分!
    
    在评卷时使用的输入数据与试卷中给出的实例数据可能是不同的。
    请把所有函数写在同一个文件中,调试好后,存入与【考生文件夹】下对应题号的“解答.txt”中即可。
    
    相关的工程文件不要拷入。
    
    源代码中不能能使用诸如绘图、Win32API、中断调用、硬件操作或与操作系统相关的API。
    

    允许使用STL类库,但不能使用MFC或ATL等非ANSI c++标准的类库。例如,不能使用CString类型(属于MFC类库)。

分析:

直来直去的题,直接求。

代码:

#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;

int g(int k){
	int sum=0;
	while(k){
		sum=sum+k%10;
		k=k/10;
	}
	if(sum<10) return sum;
	return g(sum);
}

void f(char s[],char x[]){
	int i,j,k,slen;
	slen=strlen(s);
	for(i=0;i<6;i++){
		k=0;
		for(j=i;j<slen;j=j+6){
			k=k+s[j];
		}
		x[i]=g(k)+'0'; 
	}
	x[6]='\n';
}

int main(){
	int n,xlen=0;
	char s[100];
	char x[10000];
	scanf("%d",&n);
	while(n--){
		scanf("%s",s);
		f(s,x+xlen);
		xlen=xlen+7;
	} 
	x[xlen-1]='\0';
	printf("%s\n",x);
	return 0;
}


9.夺冠概率
    足球比赛具有一定程度的偶然性,弱队也有战胜强队的可能。
    假设有甲、乙、丙、丁四个球队。根据他们过去比赛的成绩,得出每个队与另一个队对阵时取胜的概率表:
    甲  乙  丙  丁   
甲   -  0.1 0.3 0.5
乙 0.9  -   0.7 0.4 
丙 0.7  0.3 -   0.2
丁 0.5  0.6 0.8 -
    数据含义:甲对乙的取胜概率为0.1,丙对乙的胜率为0.3,...
    现在要举行一次锦标赛。双方抽签,分两个组比,获胜的两个队再争夺冠军。(参见【1.jpg】)

    请你进行10万次模拟,计算出甲队夺冠的概率。


    注意:
    请仔细调试!您的程序只有能运行出正确结果的时候才有机会得分!
    
    在评卷时使用的输入数据与试卷中给出的实例数据可能是不同的。
    请把所有函数写在同一个文件中,调试好后,存入与【考生文件夹】下对应题号的“解答.txt”中即可。
    
    相关的工程文件不要拷入。
    
    源代码中不能能使用诸如绘图、Win32API、中断调用、硬件操作或与操作系统相关的API。
    

    允许使用STL类库,但不能使用MFC或ATL等非ANSI c++标准的类库。例如,不能使用CString类型(属于MFC类库)。

分析:

直接模拟即可,注意rand()函数的使用,另外还有srand()函数。

另外就是括号内的概率比较时要小于,而不是小于等于,因为产生的随机数是0~9,相比1~10,小了1,所以用小于。

代码:

#include<iostream>
#include<stdio.h>
#include<stdlib.h>//rand()头文件 
#include<time.h> // time()头文件 
using namespace std;

int main(){
	int gl[4][4]={{0,1,3,5},{9,0,7,4},{7,3,0,2},{5,6,8,0}}; 
	int a,a1,b,b1;
	int i;
	int sum=0;
	srand(time(NULL));
	for(i=0;i<100000;i++){
		a1=rand()%3+1;//a的对手 
		if(rand()%10<gl[0][a1]){//首轮a胜 。此处比较用小于。下同
			switch(a1){
				case 1: b=2;b1=3;break;
				case 2: b=1;b1=3;break;
				default: b=1;b1=2;
			}
			if(rand()%10<gl[b][b1]){//首轮b胜
				a1=b; 
			}
			else a1=b1;//首轮b1胜
			if(rand()%10<gl[0][a1]){//次轮a胜
				sum++; 
			} 
		}
	}
	printf("%f\n",sum*1.0/100000);
	return 0;
}




10.取球游戏
    
    今盒子里有n个小球,A、B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断。
    我们约定:
    
    每个人从盒子中取出的球的数目必须是:1,3,7或者8个。
    轮到某一方取球时不能弃权!
    A先取球,然后双方交替取球,直到取完。
    被迫拿到最后一个球的一方为负方(输方)
    
    请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?
    程序运行时,从标准输入获得数据,其格式如下:
    先是一个整数n(n<100),表示接下来有n个整数。然后是n个整数,每个占一行(整数<10000),表示初始球数。
    程序则输出n行,表示A的输赢情况(输为0,赢为1)。
    例如,用户输入:



10
18
    则程序应该输出:
0
1
1
0




    注意:
    请仔细调试!您的程序只有能运行出正确结果的时候才有机会得分!
    
    在评卷时使用的输入数据与试卷中给出的实例数据可能是不同的。
    请把所有函数写在同一个文件中,调试好后,存入与【考生文件夹】下对应题号的“解答.txt”中即可。
    
    相关的工程文件不要拷入。
    
    源代码中不能能使用诸如绘图、Win32API、中断调用、硬件操作或与操作系统相关的API。
    

    允许使用STL类库,但不能使用MFC或ATL等非ANSI c++标准的类库。例如,不能使用CString类型(属于MFC类库)。

分析:

还不会,,

代码:

//以下为答案代码
#include<stdio.h> 
int main(){  
	int a[100],n,max;  
	int b[]={1,3,7,8};  
	bool flag[10001]={0};  
	int i,j;  
	max = 0; 
	scanf("%d",&n);  
	for(i=0;i<n;i++){   
		scanf("%d",a+i);   
		if(a[i]>max) max = a[i]; 
	}
	for(i=2;i<=max;i++){
	   for(j=0 ; j<4 && b[j]<i ; j++ ){
	       if(flag[i-b[j]]==0){
		        flag[i] = 1;
				break;
		   }
	   }  
	}   
	for(i=0;i<n;i++) printf("%d\n",flag[a[i]]);  
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值