树状数组详解

树状数组详解

出处:https://www.cnblogs.com/xenny/p/9739600.html
https://blog.csdn.net/bestsort/article/details/80796531

1.什么是树状数组?
顾名思义,就是用数组来模拟树形结构呗。那么衍生出一个问题,为什么不直接建树?答案是没必要,因为树状数组能处理的问题就没必要建树。和Trie树的构造方式有类似之处。

2.树状数组可以解决什么问题?
可以解决大部分基于区间上的更新以及求和问题。

3.树状数组和线段树的区别在哪里?
具体区别和联系如下:
1.两者在复杂度上同级, 但是树状数组的常数明显优于线段树, 其编程复杂度也远小于线段树.
2.树状数组的作用被线段树完全涵盖, 凡是可以使用树状数组解决的问题, 使用线段树一定可以解决, 但是线段树能够解决的问题树状数组未必能够解决.
3.树状数组的突出特点是其编程的极端简洁性, 使用lowbit技术可以在很短的几步操作中完成树状数组的核心操作,其代码效率远高于线段树

4.树状数组的优点和缺点
修改和查询的复杂度都是O(logN),而且相比线段树系数要少很多,比传统数组要快,而且容易写。
缺点是遇到复杂的区间问题还是不能解决,功能还是有限。

一、树状数组介绍

对于一般的二叉树,我们是这样画的
在这里插入图片描述
把位置稍微移动一下,便是树状数组的画法
在这里插入图片描述
上图其实是求和之后的数组,原数组和求和数组的对照关系如下,其中a数组是原数组,c数组是求和后的数组:
在这里插入图片描述
C[i]代表子树的叶子结点的权值之和

如图可以知道:
C[1]=A[1];
C[2]=A[1]+A[2];
C[3]=A[3];
C[4]=A[1]+A[2]+A[3]+A[4];
C[5]=A[5];
C[6]=A[5]+A[6];
C[7]=A[7];
C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

再将其转化为二进制看一下:
C[1] = C[0001] = A[1];
C[2] = C[0010] = A[1]+A[2];
C[3] = C[0011] = A[3];
C[4] = C[0100] = A[1]+A[2]+A[3]+A[4];
C[5] = C[0101] = A[5];
C[6] = C[0110] = A[5]+A[6];
C[7] = C[0111] = A[7];
C[8] = C[1000] = A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

对照式子可以发现 C[i] = A[i - 2^k+1] + … + A[i]; ;
(k为i的二进制中从最低位到高位连续零的长度)
例如i=8(1000)时,k=3;
C[8] = A[8-2^3+1]+…+A[8]
即为上面列出的式子
在这里插入图片描述
这个怎么实现求和呢,比如我们要找前7项和,那么应该是SUM = C[7] + C[6] + C[4];
而根据上面的式子,容易的出SUMi = C[i] + C[i-2^k1] +
C[(i - 2^k1) - 2k2] + …;
其实树状数组就是一个二进制上面的应用。

现在新的问题来了
2^k
该怎么求呢,不难得出2^k =
i&(i^(i-1));但这个还是不好求出呀,前辈的智慧就出来了
2^k = i&(-i);
为什么呢?

这里利用的负数的存储特性,负数是以补码存储的,对于整数运算 x&(-x)有

1 当x为0时,即 0 & 0,结果为0;

2 当x为奇数时,最后一个比特位为1,取反加1没有进位,故x和-x除最后一位外前面的位正好相反,按位与结果为0。结果为1。

3 当x为偶数,且为2的m次方时,x的二进制表示中只有一位是1(从右往左的第m+1位),其右边有m位0,故x取反加1后,从右到左第有m个0,第m+1位及其左边全是1。这样,x& (-x) 得到的就是x。

4 当x为偶数,却不为2的m次方的形式时,写作x= y * (2^k)。
其中,y的最低位为1。实际上就是把x用一个奇数左移k位来表示。这时,x的二进制表示最右边有k个0,从右往左第k+1位为1。当对x取反时,最右边的k位0变成1,第k+1位变为0;再加1,最右边的k位就又变成了0,第k+1位因为进位的关系变成了1。左边的位因为没有进位,正好和x原来对应的位上的值相反。二者按位与,得到:第k+1位上为1,左边右边都为0。结果为2^k。

总结一下:x&(-x),当x为0时结果为0;x为奇数时,结果为1;x为偶数时,结果为x中2的最大次方的因子。
而且这个有一个专门的称呼,叫做lowbit,即取2^k。

二、如何建立树状数组

上面已经解释了如何用树状数组求区间和,那么如果我们要更新某一个点的值呢,还是一样的,上面说了C[i] = A[i - 2k+1] + A[i - 2k+2] + … + A[i],那么如果我们更新某个A[i]的值,则会影响到所有包含有A[i]位置。如果求A[i]包含哪些位置里呢,同理有
A[i] 包含于 C[i + 2k]、C[(i + 2k) + 2k]…;

好,现在已经搞清楚了更新和求和,就可以来建树状数组了。如果上面的求和、更新或者lowbit步骤还没搞懂的化,建议再思考弄懂再往下看。
那么构造一个树状数组则为

int n;
int a[1005],c[1005]; //对应原数组和树状数组

int lowbit(int x){
    return x&(-x);
}

void updata(int i,int k){    //在i位置加上k
    while(i <= n){
        c[i] += k;
        i += lowbit(i);
    }
}

int getsum(int i){        //求A[1 - i]的和
    int res = 0;
    while(i > 0){
        res += c[i];
        i -= lowbit(i);
   }
   return res;
}

这样就构造了一个树状数组。下面看一道模板题目吧。
题目链接:敌兵布阵

#include <bits/stdc++.h>
using namespace std;

int n,m;
int a[50005],c[50005]; //对应原数组和树状数组

int lowbit(int x){
    return x&(-x);
}

void updata(int i,int k){    //在i位置加上k
    while(i <= n){
        c[i] += k;
        i += lowbit(i);
    }
}

int getsum(int i){        //求A[1 - i]的和
    int res = 0;
    while(i > 0){
        res += c[i];
        i -= lowbit(i);
    }
    return res;
}

int main(){
    int t;
    cin>>t;
    for(int tot = 1; tot <= t; tot++){
        cout << "Case " << tot << ":" << endl;
        memset(a, 0, sizeof a);
        memset(c, 0, sizeof c);
        cin>>n;
        for(int i = 1; i <= n; i++){
            cin>>a[i];
            updata(i,a[i]);   //输入初值的时候,也相当于更新了值
        }

        string s;
        int x,y;
        while(cin>>s && s[0] != 'E'){
            cin>>x>>y;
            if(s[0] == 'Q'){    //求和操作
                int sum = getsum(y) - getsum(x-1);    
                   //x-y区间和也就等于1-y区间和减去1-(x-1)区间和
                cout << sum << endl;
            }
            else if(s[0] == 'A'){
                updata(x,y);
            }
            else if(s[0] == 'S'){
                updata(x,-y);    //减去操作,即为加上相反数
            }
        }

    }
    return 0;
}

这就是最简单的点更新区间求和了。

三、树状数组的几种变式(区间更新,区间查询)

1.单点更新、单点查询

传统数组可做

2.单点更新、区间查询

已讲解,详细看上面

3.区间更新、单点查询

这就是第一个问题,如果题目是让你把x-y区间内的所有值全部加上k或者减去k,然后查询操作是问某个点的值,这种时候该怎么做呢。如果是像上面的树状数组来说,就必须把x-y区间内每个值都更新,这样的复杂度肯定是不行的,这个时候,就不能再用数据的值建树了,这里我们引入差分,利用差分建树。

假设我们规定A[0] = 0;
则有 A[i] = Σ(j=1-i)D[j]; (D[j] = A[j] - A[j-1]),即前面i项的差值和,这个有什么用呢?例如对于下面这个数组
A[] = 1 2 3 5 6 9
D[] = 1 1 1 2 1 3
如果我们把[2,5]区间内值加上2,则变成了
A[] = 1 4 5 7 8 9
D[] = 1 3 1 2 1 1

发现了没有,当某个区间[x,y]值改变了,区间内的差值是不变的,只有D[x]和D[y+1]的值发生改变,至于为什么我想我就不用解释了吧。
所以我们就可以利用这个性质对D[]数组建立树状数组,代码为:

int n,m;
int a[50005] = {0},c[50005]; //对应原数组和树状数组

int lowbit(int x){
    return x&(-x);
}

void updata(int i,int k){    //在i位置加上k
    while(i <= n){
        c[i] += k;
        i += lowbit(i);
    }
}
 
int getsum(int i){        //求D[1 - i]的和,即A[i]值
    int res = 0;
    while(i > 0){
        res += c[i];
        i -= lowbit(i);
    }
    return res;
}

int main(){
    cin>>n;
    for(int i = 1; i <= n; i++){
        cin>>a[i];
        updata(i,a[i] - a[i-1]);   //输入初值的时候,也相当于更新了值
    }
     
    //[x,y]区间内加上k
    updata(x,k);    //A[x] - A[x-1]增加k
    updata(y+1,-k);        //A[y+1] - A[y]减少k
     
    //查询i位置的值
    int sum = getsum(i);

    return 0;
}

这样就把,原来要更新一个区间的值变成了只需要更新两个点。也很容易理解吧。

4.区间更新、区间查询

上面我们说的差值建树状数组,得到的是某个点的值,那如果我既要区间更新,又要区间查询怎么办。这里我们还是利用差分,由上面可知
∑(i=1-n)A[i] = ∑(i=1-n)∑(j=1-i)D[j];
则A[1]+A[2]+…+A[n]
= (D[1]) + (D[1]+D[2]) + … + (D[1]+D[2]+…+D[n])
= nD[1] + (n-1)D[2] +… +D[n]
= n(D[1]+D[2]+…+D[n]) - (0D[1]+1D[2]+…+(n-1)*D[n])

上式可以变为∑(i=1-n)A[i] = n∑(i=1-n)D[i] - ∑(i=1-n)(D[i](i-1));

如果你理解前面的都比较轻松的话,这里也就知道要干嘛了,维护两个数状数组,sum1[i] = D[j]构成的树状数组,sum2[i] = D[j]*(j-1)构成的树状数组;

int n,m;
int a[50005] = {0};
int sum1[50005];    //(D[i]的树状数组)
int sum2[50005];    //((i-1)*D[i]的树状数组)

int lowbit(int x){
    return x&(-x);
}

void updata(int i,int k){
    int x = i;    //因为x不变,所以得先保存i值
    while(i <= n){
        sum1[i] += k;
        sum2[i] += k * (x-1);
        i += lowbit(i);
    }
}

int getsum(int i){        //求前缀和
    int res = 0, x = i;
    while(i > 0){
        res += x * sum1[i] - sum2[i];
        i -= lowbit(i);
    }
    return res;
}

int main(){
    cin>>n;
    for(int i = 1; i <= n; i++){
        cin>>a[i];
        updata(i,a[i] - a[i-1]);   //输入初值的时候,也相当于更新了值
    }

    //[x,y]区间内加上k
    updata(x,k);    //A[x] - A[x-1]增加k
    updata(y+1,-k);        //A[y+1] - A[y]减少k

    //求[x,y]区间和
    int sum = getsum(y) - getsum(x-1);
    
    return 0;
}

再附赠两道模板题目,可以自行写一下以便理解
区间修改、单点查询模板题目:P3368 【模板】树状数组 2
区间修改、区间查询模板题目:A Simple Problem with Integers

四、二维树状数组

我们已经学会了对于序列的常用操作,那么我们不由得想到(谁会想到啊喂)……能不能把类似的操作应用到矩阵上呢?这时候我们就要写二维树状数组了!

在一维树状数组中,tree[x](树状数组中的那个“数组”)记录的是右端点为x、长度为lowbit(x)的区间的区间和。
那么在二维树状数组中,可以类似地定义tree[x][y]记录的是右下角为(x, y),高为lowbit(x), 宽为 lowbit(y)的区间的区间和

单点修改+区间查询
void add(int x, int y, int z)
{ //将点(x, y)加上z    
    int memo_y = y;
    while(x <= n)
    {
        y = memo_y;
        while(y <= n)            
            tree[x][y] += z, y += y & -y;        
        x += x & -x;    
    }
}

void ask(int x, int y)
{//求左上角为(1,1)右下角为(x,y) 的矩阵和    
    int res = 0, memo_y = y;    
    while(x)
    {        
        y = memo_y;        
        while(y)           
            res += tree[x][y],y -= y & -y;        
        x -= x & -x;    
    }
}
区间修改 + 单点查询

我们对于一维数组进行差分,是为了使差分数组前缀和等于原数组对应位置的元素。
那么如何对二维数组进行差分呢?可以针对二维前缀和的求法来设计方案。
二维前缀和:
在这里插入图片描述
那么我们可令差分数组d[i][j]表示a[i][j]与a[i-1][j]+a[i][j-1]-a[i-1][j-1] 的差。

例如下面这个矩阵

 1  4  8 
 6  7  2 
 3  9  5

对应的差分数组就是

  1  3  4 
  5 -2 -9
 -3  5  1

当我们想要将一个矩阵加上x时,怎么做呢?
下面是给最中间的3*3矩阵加上x时,差分数组的变化:

0  0  0  0  0
0 +x  0  0 -x
0  0  0  0  0
0  0  0  0  0
0 -x  0  0 +x

这样给修改差分,造成的效果就是:

0  0  0  0  0
0  x  x  x  0
0  x  x  x  0
0  x  x  x  0
0  0  0  0  0

那么我们开始写代码吧!

void add(int x, int y, int z)
{
     int memo_y = y;
     while(x <= n)
     {
          y = memo_y;
          while(y <= n)
              tree[x][y] += z, y += y & -y;
          x += x & -x;    
      }
}
void range_add(int xa, int ya, int xb, int yb, int z)
{   
     add(xa, ya, z);
     add(xa, yb + 1, -z);
     add(xb + 1, ya, -z);  
     add(xb + 1, yb + 1, z)
}
void ask(int x, int y)
{    
    int res = 0, memo_y = y;    
    while(x)
    {        
        y = memo_y;        
        while(y)            
            res += tree[x][y], y -= y & -y;        
        x -= x & -x;
    }
}
区间修改 + 区间查询

类比之前一维数组的区间修改区间查询,下面这个式子表示的是点(x, y)的二维前缀和:
在这里插入图片描述
(d[h][k]为点(h, k)对应的“二维差分”(同上题))
这个式子炒鸡复杂(o(n^4) 复杂度!)
但利用树状数组,我们可以把它优化到o(log2n)!

首先,类比一维数组,统计一下d[h][k]每个出现过多少次。d[1][1]出现了xy次,d[1][2]出现了x(y-1)次……d[h][k]出现了(x-h+1)*(y-k+1)次。
那么这个式子就可以写成:
在这里插入图片描述
把这个式子展开,就得到:
在这里插入图片描述
那么我们要开四个树状数组,分别维护:
d[i][j], d[i][j]*i, d[i][j]*j, d[i][j]* i* j
这样就完成了!

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;

ll read()
{    
    char c;
    bool op = 0;    
    while((c = getchar()) < '0' || c > '9')        
        if(c == '-') op = 1;    
    ll res = c - '0';
    while((c = getchar()) >= '0' && c <= '9')        
        res = res * 10 + c - '0'; 
     return op ? -res : res;
}

const int N = 205;
ll n, m, Q;
ll t1[N][N], t2[N][N], t3[N][N], t4[N][N];

void add(ll x, ll y, ll z)
{
    for(int X = x; X <= n; X += X & -X)        
        for(int Y = y; Y <= m; Y += Y & -Y)
        { 
            t1[X][Y] += z;            
            t2[X][Y] += z * x;            
            t3[X][Y] += z * y;           
             t4[X][Y] += z * x * y;        
         }
}

void range_add(ll xa, ll ya, ll xb, ll yb, ll z)
{ //(xa, ya) 到 (xb, yb) 的矩形
    add(xa, ya, z);    
    add(xa, yb + 1, -z);    
    add(xb + 1, ya, -z);    
    add(xb + 1, yb + 1, z);
}

ll ask(ll x, ll y)
{
    ll res = 0;    
    for(int i = x; i; i -= i & -i)    
         for(int j = y; j; j -= j & -j)           
             res += (x + 1) * (y + 1) * t1[i][j] - (y + 1) * t2[i][j]
             - (x + 1) * t3[i][j]+ t4[i][j];    
    return res;
}

ll range_ask(ll xa, ll ya, ll xb, ll yb)
{
    return ask(xb, yb) - ask(xb, ya - 1) - ask(xa - 1, yb) + ask(xa - 1, ya - 1);
}

int main(
){
    n = read(), m = read(), Q = read();    
    for(int i = 1; i <= n; i++)
          for(int j = 1; j <= m; j++)
          {          
              ll z = read();           
              range_add(i, j, i, j, z);       
          }    
          while(Q--)
          {  
                ll ya = read(), xa = read(), yb = read(), xb = read(), z = read(), a = read();        
                if(range_ask(xa, ya, xb, yb) < z * (xb - xa + 1) * (yb - ya + 1))            
                range_add(xa, ya, xb, yb, a);    
           }    
           for(int i = 1; i <= n; i++)
           {        
                for(int j = 1; j <= m; j++)            
                    printf("%lld ", range_ask(i, j, i, j));        
                putchar('\n');    
            }    
            return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值