树状数组 数据结构详解与模板(可能是最详细的了)

本文详细介绍了树状数组这一数据结构,包括其基础概念、单点更新、区间查询以及高级操作如求逆序对、区间最大值等。树状数组的特点在于其操作复杂度为O(logn),并且编程简洁。文章通过图文并茂的方式帮助读者理解树状数组的工作原理,并提供了相关的代码示例。
摘要由CSDN通过智能技术生成

目录

转载请注明出处:bestsort.cn

树状数组基础

单点更新:

区间查询:

高级操作

求逆序对

操作

原理

求区间最大值

区间修改+单点查询

查询

修改

区间修改+区间查询

查询

修改

二维树状数组

单点修改+区间查询

区间修改 + 单点查询

区间修改 + 区间查询



转载请注明出处:bestsort.cn

树状数组基础

树状数组是一个查询和修改复杂度都为log(n)的数据结构。主要用于数组的单点修改&&区间求和.

另外一个拥有类似功能的是线段树.

 

具体区别和联系如下:

1.两者在复杂度上同级, 但是树状数组的常数明显优于线段树, 其编程复杂度也远小于线段树.

2.树状数组的作用被线段树完全涵盖, 凡是可以使用树状数组解决的问题, 使用线段树一定可以解决, 但是线段树能够解决的问题树状数组未必能够解决.

3.树状数组的突出特点是其编程的极端简洁性, 使用lowbit技术可以在很短的几步操作中完成树状数组的核心操作,其代码效率远高于线段树。

上面出现了一个新名词:lowbit.其实lowbit(x)就是求x最低位的1;

下面加图进行解释

对于一般的二叉树,我们是这样画的

把位置稍微移动一下,便是树状数组的画法

 

一图秒懂

重头戏来了,bestsort教你一图学会树状数组~(咱也不知道为啥其他博客写那么复杂

需要注意的是,图中的子节点包括自己,比如说8这个节点,里面的值是原始数组中[5,8]的和

标记为灰色的节点实际已被上层覆盖,不占据空间

下面是二进制版本,能看到

更新过程是每次加了个二进制的低位1(101+1 ->110, 110 + 10 -> 1000, 1000 + 1000 -> 10000)

查询过程每次就是去掉了二进制中的低位1(1111 - 1 -> 1110, 1110 - 10 -> 1100, 1100 - 100 -> 1000)

 

 

开篇就说了,lowbit(x)是取出x的最低位1;具体操作为

int lowbit(x){return x&(-x);}

极致简短!!!!现在我们来理解一下这行代码:

 

我们知道,对于一个数的负数就等于对这个数取反+1

以二进制数11010为例:11010的补码为00101,加1后为00110,两者相与便是最低位的1

其实很好理解,补码和原码必然相反,所以原码有0的部位补码全是1,补码再+1之后由于进位那么最末尾的1和原码

最右边的1一定是同一个位置(当遇到第一个1的时候补码此位为0,由于前面会进一位,所以此位会变为1)

 

所以我们只需要进行a&(-a)就可以取出最低位的1了

会了lowbit,我们就可以进行区间查询和单点更新了!!!

--------------------------------------------------------------------------------------------

单点更新:

继续看开始给出的图

此时如果我们要更改A[1]

则有以下需要进行同步更新

 

1(001)        C[1]+=A[1]

lowbit(1)=001 1+lowbit(1)=2(010)     C[2]+=A[1]

lowbit(2)=010 2+lowbit(2)=4(100)     C[4]+=A[1]

lowbit(4)=100 4+lowbit(4)=8(1000)   C[8]+=A[1]

换成代码就是:

void update(int x,int y,int n){
    for(int i=x;i<=n;i+=lowbit(i))    //x为更新的位置,y为更新后的数,n为数组最大值
        c[i] += y;
}

--------------------------------------------------------------------------------------------

区间查询:

举个例子 i=5

C[4]=A[1]+A[2]+A[3]+A[4]; 

C[5]=A[5];

可以推出:   sum(i = 5)  ==> C[4]+C[5];

序号写为二进制: sum(101)=C[(100)]+C[(101)];

第一次101,减去最低位的1就是100;

 

其实也就是单点更新的逆操作

代码如下:

int getsum(int x){
    int ans = 0;
    for(int i=x;i;i-=lowbit(i))
        ans += c[i];
    return ans;
}

 

 

 

lowbit会了,区间查询有了,单点更新也有了接下来该做题了

单击传送门移步HDU1166 敌兵布阵

附代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <vector>
#define For(a,b) for(int a=0;a<b;a++)
#define mem(a,b) memset(a,b,sizeof(a))
#define _mem(a,b) memset(a,0,(b+1)<<2)
#define lowbit(a) ((a)&-(a))
using namespace std;
typedef long long ll;
const int maxn =  5*1e4+5;
const int INF = 0x3f3f3f3f;
int c[maxn];
void update(int x,int y,int n){
    for(int i=x;i<=n;i+=lowbit(i))
        c[i] += y;
}
int getsum(int x){
 
评论 59
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值