Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
.
.#
4 4
…#
..#.
.#..
…
-1 -1
Sample Output
2
1
额,对行暴力回溯,因为只放k个的话,可能没放满,所以就考虑对每行行搜索和不搜索各考虑一次;
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath>
#include<queue>
#include<cstdio>
#include<set>
#include<stack>
using namespace std;
int n,k,tot;
char s[10][10];
int mark[10];
void dfs(int row ,int nn){
if(nn==k) {
tot++;
return;
}
if(row>n-1) return;
dfs(row+1,nn);//该行不搜索
for(int i=0;i<n;i++){
if(s[row][i]=='#'&&!mark[i]){//搜索
mark[i]=1;
dfs(row+1,nn+1);
mark[i]=0;
}
}
}
int main()
{
while(scanf("%d %d",&n,&k)!=EOF){
memset(mark,0,sizeof(mark));
if(n+k<0) break;
tot=0;
for(int i=0;i<n;i++)
scanf("%s",s[i]);
dfs(0,0);
printf("%d\n",tot);
}
return 0;
}