Description
因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部分都是单身。某天,他们在机房商量一个绝妙的计划”一卡通大冒险”。这个计划是由wf最先提出来的,计划的内容是,把自己的联系方式写在校园一卡通的背面,然后故意将自己的卡”遗失”在某处(如水房,TD,食堂,主M。。。。)他们希望能有MM看到他们遗失卡,能主动跟他们联系,这样就有机会请MM吃饭了。他们决定将自己的一卡通夹在基本相同的书里,然后再将书遗失到校园的各个角落。正当大家为这个绝妙的计划叫好时,大家想到一个问题。很明显,如果只有一张一卡通,那么只有一种方法,即,将其夹入一本书中。当有两张一卡通时,就有了两种选择,即,将两张一卡通夹在一本书里,或者分开夹在不同的书里。当有三张一卡通时,他们就有了5种选择,即:
{{A},{B},{C}} , {{A,B},{C}}, {{B,C},{A}}, {{A,C},{B}} ,{{A,B,C}} 于是,
这个邪恶计划的组织者wf希望了解,如果ACM训练对里有n位帅哥(即有N张一卡通),那么要把这些一卡通夹到书里有多少种不同的方法。
Input
包含多组数据,第一行为n,表示接下来有n组数据。以下每行一个数x,表示共有x张一卡通。(1≤x≤2000).
Output
对每组数据,输出一行:不同的方法数,因为这个数可能非常大,我们只需要它除以1000的余数。
Sample Input
4
1
2
3
100
Sample Output
1
2
5
751
注意观察,已3 为样例,{{A},{B},{C}} , {{A,B},{C}}, {{B,C},{A}}, {{A,C},{B}} ,{{A,B,C}} 。4可以为
{{{A,D},{B},{C}},,{{A},{B,D},{C}} ,{{A},{B},{C,D}}
{{A,B,D},{C}},{{A,B},{C,D}},{{A,B},{C},{D}},
{{B,C,D},{A}}, {{B,C},{A,D}}, {{B,C},{A},{D}}
类推:
注意过程会发现 n个元素分为k堆时,是由 n-1个元素 分成k堆乘K,加上 n-1个元素 分成 k-1堆组成的。
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#include<set>
using namespace std;
int c[2005][2000];
int main(){
c[1][1]=1,c[2][1]=1,c[2][2]=1;
for(int i=3;i<=2000;i++){
c[i][1]=1;
for(int j=2;j<=i;j++){
c[i][j]=(c[i-1][j]*j+c[i-1][j-1])%1000;
}
}
int n;
cin>>n;
while(n--){
int cas;
cin>>cas;
int sum=0;
for(int j=1;j<=cas;j++){
sum+=c[cas][j];
sum%=1000;
}
cout<<sum<<endl;
}
return 0;
}