图结构练习——判断给定图是否存在合法拓扑序列

题目描述

 给定一个有向图,判断该有向图是否存在一个合法的拓扑序列。

输入

 输入包含多组,每组格式如下。
第一行包含两个整数n,m,分别代表该有向图的顶点数和边数。(n<=10)
后面m行每行两个整数a b,表示从a到b有一条有向边。
 

输出

 若给定有向图存在合法拓扑序列,则输出YES;否则输出NO。
 

示例输入

1 0
2 2
1 2
2 1

示例输出

YES
NO

提示

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若<u,v> ∈E(G),则u在线性序列中出现在v之前。
    通常,这样的线性序列称为满足拓扑次序(TopoiSicai Order)的序列,简称拓扑序列
把所有入度为0的点入队列,依次弹出,若某一点弹出,则把该点到达大下一个点的入度-1,在遍历一下若有入度为0的点继续入队列,重复上个操作,若该循环结束,假如弹出点为n个则 是拓扑,否则,不是。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

struct node
{
        int data;
        struct node *next;
}*head[20];

int degree[20];
int st[20];
int dis[20];

int main()
{
        int i,a,b,cnt;
        int n,m;
        struct node *p;
        for( i = 0; i < 20; i++ )
        {
                head[i] = (struct node *)malloc(sizeof(struct node));
        }

        while( ~scanf("%d %d",&n,&m) )
        {
                int top = 0;
                cnt = 0;
                for( i = 0; i <= n; i++ )
                {
                        head[i]->next = NULL;
                }

                memset(degree,0,sizeof(degree));
                memset(dis,0,sizeof(dis));

                for( i = 0; i < m; i++ )
                {
                        scanf("%d %d",&a,&b);
                        p = (struct node *)malloc(sizeof(struct node));
                        p->data = b;
                        p->next = head[a]->next;
                        head[a]->next = p;
                        degree[b]++;
                }

                for( i = 1; i <= n; i++ )
                {
                        if( degree[i] == 0 )
                        {
                                dis[i] = 1;
                                st[++top] = i;
                        }
                }

                while( top )
                {
                        int t = st[top--];
                        cnt++;

                        p = head[t]->next;

                        while( p )
                        {
                                degree[p->data]--;
                                p = p->next;
                        }

                        for( i = 1; i <= n; i++ )
                        {
                                if( !dis[i] && degree[i] == 0 )
                                {
                                        dis[i] = 1;
                                        st[++top] = i;
                                }
                        }
                }

                if( cnt < n )
                {
                        printf("NO\n");
                }
                else
                {
                        printf("YES\n");
                }
        }

        return 0;
}
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值