(一)首先是预处理,用动态规划(DP)解决。
设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。(DP的状态)
例如:
A数列为:3 2 4 5 6 8 1 2 9 7
F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。同理 F[1,1] = max(3,2) = 3, F[1,2]=max(3,2,4,5) = 5,F[1,3] = max(3,2,4,5,6,8,1,2) = 8;
并且我们可以容易的看出F[i,0]就等于A[i]。(DP的初始值)
这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。
我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从 i 到i + 2 ^ (j - 1) - 1为一段,i + 2 ^ (j - 1)到i + 2 ^ j - 1为一段(长度都为2 ^ (j - 1))。用上例说明,当i=1,j=3时就是
3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段各自最大值中的最大值。于是我们得到了状态转移方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。
(二)然后是查询。
假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)。
因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}。
举例说明,要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#include <math.h>
#define LL long long
using namespace std;
const int MAXN = 1e5+10;
const int MAXM = 20;
int dp[MAXN][MAXM];
void init_RMQ(int n){
for(int j = 1; (1<<j) <= n; ++j){
for(int i = 1; i+(1<<j)-1 <= n; ++i){
dp[i][j] = max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
}
}
int query_RMQ(int l,int r){
int k = log(r-l+1)/log(2);
return max(dp[l][k],dp[r-(1<<k)+1][k]);
}
int main(){
int n,m;
int l,r;
cin>>n;
for(int i = 1; i <= n; ++i)
cin>>dp[i][0];
init_RMQ(n);
cin>>m;
while(m--){
cin>>l>>r;
cout<<query_RMQ(l,r)<<endl;
}
}