kmp

本文深入解析了KMP算法及其next数组的计算方法,通过优化的next数组提高了模式匹配效率。此外,还介绍了Boyer-Moore算法的Bad Character Heuristic和Good Suffix Heuristic,并详细说明了其预处理步骤。通过具体实现,读者可以更好地理解这两种字符串搜索算法的工作原理。
摘要由CSDN通过智能技术生成
/*
kmp的next数组存的是i之前的串的前缀和后缀的最长匹配长度
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int next1[10100];
int bmBc[10100],suff[10100],bmGs[10100];
string str;//模式串
string a;//主串
void makenext1()//找模式串的next数组,未优化
{
    int l=str.size();
    next1[0]=-1;
    int k=-1,j=0;
    while(j<l)
    {
        if(k==-1||str[j]==str[k])
        {
            ++j;
            ++k;
            next1[j]=k;
        }
        else
            k=next1[k];
    }
}
void getNext()//优化后的next1数组
{
    int l=str.size();
    next1[0]=-1;
    int k=-1,j=0;
    while(j<l)
    {
        if(k==-1||str[j]==str[k])
        {
            ++j;
            ++k;
            if(str[j]!=str[k])
                next1[j]=k;
            else
                next1[j]=next1[k];
        }
        else
            k=next1[k];
    }
}
int kmp()//kmp算法
{
    makenext1();
    //getNext();
    int i=0,j=0,sum=0;
    int n=a.size();
    int m=str.size();
    while(i<n)
    {
        if(j==-1||a[i]==str[j])
            i++,j++;
        else
            j=next1[j];
        if(j==m)
        {
            //return i-j;//模式串第一次在主串中出现的位置
            sum++;//模式串在主串中出现过多少次
        }
    }
    return sum;//没出现过返回-1
}
void preBmBc()
{
    int i;
    int m=str.size();
    for(int i=0; i<256; i++)
        bmBc[i]=m;
    for(i=0; i<m-1; i++)
        bmBc[str[i]]=m-i-1;
}
void suffixes()
{
    int m=str.size(),q;
    suff[m-1]=m;
    for(int i=m-2; i>=0; i--)
    {
        q=i;
        while(q>=0&&str[q]==str[m-i-1+q])
            q--;
        suff[i]=i-q;
    }
}
void preBmGs()
{
    int i,j=0,m=str.size();
    suffixes();
    for(i=0; i<m; i++)
        bmGs[i]=m;
    for(int i=m-1; i>=0; --i)
        if(suff[i]==i+1)
            for(; j<m-1-i; ++j)
                if(bmGs[j]==m)
                    bmGs[j]=m-1-i;
    for(i=0; i<=m-2; i++)
        bmGs[m-1-suff[i]]=m-1-i;
}
int BM()//有毒慎用
{
    int i, j=0,sum=0;
    preBmGs();
    preBmBc();
    // for(int i=0;i<=20;i++)
    //printf("%d ",bmGs[i]);printf("\n");
    int n=a.size(),m=str.size();
    //for(int i=0;i<m;i++)
    //printf("%d ",bmBc[str[i]]);printf("\n");
    //j=0;
    while (j<=n-m)
    {
        i=m-1;
        while(i>=0&&str[i]==a[i+j])
            i--;
        if (i<0)//匹配成功
        {
            //OUTPUT(j);返回当前值
            sum++;
            j+=bmGs[0];
        }
        else
        {
            //printf("i=%d j=%d bm=%d\n",i,j,bmBc[a[i+j]]);
            j+=max(bmGs[i],bmBc[a[i+j]]-m+1+i);

            //printf("j=%d\n",j);
        }
    }
    return sum;//不存在返回-1
}
int main()
{
    int ncase;
    scanf("%d",&ncase);
    while(ncase--)
    {
        cin>>str>>a;
        int sum=kmp();
        printf("%d\n",sum);//主串中有多少个模式串
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值