折线分割平面

版权声明:未经博主允许,不准转发。 https://blog.csdn.net/ACMerdsb/article/details/90408786

Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0< n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2
1
2
Sample Output
2
7
Hint
hdoj2050 有链接提示的题目请先去链接处提交程序,AC后提交到SDUTOJ中,以便查询存档。
Source
HDU LCY递推求解专题练习

递推题目:
思路:就是画出第三组,然后找规律。真画的话,第四组就很难了。所以只画第三组就可以了。
(真正厉害的可以不用画第三组)
解题方案:就是将新加的折线(可以看作是两部分),每一部分都与所有的边进行相交。但是注意的是不能多条
交于一点。这样下来,你会发现一个规律,每加一个折线,就会多出两倍的折线数(除本身以外)+1(也就是四倍
的直线数+1,其中,一个折线看作是两条直线。)个区域,
就得出公式:
f[i] = f[i-1] + (多出来的区域)2*(i-1)*2 + 1;

AC代码:
#include <stdio.h>
#include <stdlib.h>
long long int f[10005];
int main()
{
    f[1] = 2;
    f[2] = 7;
    int i;
    int c;
    int n;
    scanf("%d",&c);
    while(c--)
    {
        scanf("%d",&n);
        for(i=3;i<=n;i++)
            f[i] = f[i-1] + 2*(i-1)*2 + 1;
        printf("%lld\n",f[n]);
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页