【题目大意】
给m个数字,保证每个数字的质因子都是前t个质数中的一些。从m个数字中选若干个数组成一个集合,求,有多少个非空集合,集合内每个数字相乘是一个完全平方数。
【思路】
首先,对每个数质因子分解,如果其某个因子的个数可以等价地看做个数%2。比方,数字9可以看做数字1,数字20可以看做数字5。
如果我们设xi表示是否选择第i个数字(0/1),可以列出只有位运算的方程组。这个不好说,我举个列吧。就样例来说。
上表是每个数的因子个数等价情况。可以列出如下方程组。
2: (0&x1)^(0&x2)^(0&x3)^(0&x4)== 0
3: (0&x1)^(0&x2)^(0&x3)^(1&x4)== 0
5: (0&x1)^(1&x2)^(1&x3)^(0&x4)== 0
每个方程什么意思呢?比方,xi全为1(所有数字都选),其乘积,质因子3的个数的奇偶性对应的上面方程中的”3:(0&x1)^(0&x2)^(0&x3)^(1&x4)== 0“,大概意思可以表述为:选了b1(9),乘积质因子3的个数会+0;选了b2(20),乘积质因子3的个数会+0;选了b3(500),乘积质因子2的个数会+0;选了b4(3),乘积质因子2的个数会+1;其最终的奇偶性,就是异或和。如果是完全平方数,奇偶性质当然是偶。所以,方程的一个解,对应一个合法的集团。
那么,剩下的问题就是怎么去求这个方程组的解的个数。其实解的个数 == 2^(m-行列式的秩) - 1。
我们假设t == m-行列式的秩,如果我们确定了最后t个xi的0/1情况,再去线性变化行列式,会发现这变成了一个满秩矩阵(满秩矩阵有且仅有一个解)。那么就是确定的最后t个xi的情况,解就唯一了。因为是0/1,答案是2^t,减去空集,就是2^t - 1。
而,具体这个方程组怎么线性变换,利用这个公式,很好化的:(a&b)^(a&c) == a&(b^c)
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<cctype>
#include<string>
#include<algorithm>
#include<iostream>
#include<ctime>
#include<map>
#include<set>
using namespace std;
#define MP(x,y) make_pair((x),(y))
#define PB(x) push_back(x)
typedef long long LL;
//typedef unsigned __int64 ULL;
/* ****************** */
const int INF = 100011122;
const double INFF = 1e100;
const double eps = 1e-8;
const int mod = 1000000007;
const int NN = 110;
const int MM = 5000010;
/* ****************** */
int pri[NN], a[NN];
bool vis[10010];
int gss[NN][NN];
void init()
{
int i, j, n = 10000, tol = 0;
memset(vis, false, sizeof(vis));
for(i = 2; i < n; i ++)
{
if(!vis[i])
{
pri[tol++] = i;
if(tol == 100) return;
for(j = i + i; j < n; j += i)
vis[j] = true;
}
}
}
//返回行列式的秩,编号都从0开始
int gauss(int n,int m)
{
int i, j, k, kk, pca;
// int temp;
for(i = 0, j = 0; i < n && j < m; i ++, j ++)
{
pca = i;
for(k = i + 1; k < n; k ++)
{
if(abs(gss[k][j]) > abs(gss[pca][j]))
pca = k;
}
if(pca != i)
{
for(k = j; k < m; k ++)
{
swap(gss[i][k], gss[pca][k]);
}
}
if(gss[i][j] == 0)
{
i--;
continue;
}
for(k = i + 1; k < n; k ++)
{
// temp = gss[k][j]/gss[i][j];
if(gss[k][j]==0) continue;
gss[k][j] = 0;
for(kk = j + 1; kk < m; kk ++)
{
// gss[k][kk] -= gss[i][kk]*temp;
gss[k][kk] ^= gss[i][kk];
}
}
}
return i;
}
int main()
{
init();
LL A, B, limit = 10000000000000000LL;
int ans;
int t, m, n, i, j;
while(scanf("%d%d",&n, &m) != EOF)
{
for(i = 0; i < m; i ++)
{
scanf("%d", &t);
for(j = 0; j < n; j ++)
{
gss[j][i] = 0;
while(t%pri[j] == 0)
{
gss[j][i] ++;
t /= pri[j];
}
gss[j][i] %= 2;
}
}
ans = m - gauss(n, m);
A = B = 0;
for(int i = 0; i < ans; i ++)
{
A <<= 1;
B <<= 1;
B ++;
A += B/limit;
B %= limit;
}
if(A == 0)
printf("%lld\n",B);
else
{
printf("%lld",A);
printf("%016lld\n",B);
}
}
return 0;
}