题目:有一堆扑克里面的牌有无数张, 每种合数的牌有4张不同花色各一张, 没有质数或者大小是0或者1的牌。现在这堆牌中缺失了其中的 c 张牌, 告诉你a, b, c,接下来c张不同的丢失的牌, 然后求从这堆牌中拿出各种花色的牌各一张, 得到的点数和是k的种数有多少种(一种组合算作一种), 需要全部所有的a <= k <= b的k对应的结果
思路:FFT模板题,一定要用long double,不然会WA
代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f
// 0x3f3f3f3f
const int maxn=1e6+50;
const long double PI=acos(-1.0);
struct Complex{//复数结构体
long double x,y;
Complex(long double _x=0.0,long double _y=0.0){
x=_x;
y=_y;
}
Complex operator-(const Complex &b)const{
return Complex(x-b.x,y-b.y);
}
Complex operator+(const Complex &b)const{
return Complex(x+b.x,y+b.y);
}
Complex operator*(const Complex &b)const{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
/*
*进行FFT和IFFT前的反转变换.
*位置i和 (i二进制反转后位置)互换
*len必须是2的幂
*/
void change(Complex y[],int len){
int i,j,k;
for(i=1,j=len/2;i<len-1;i++){
if(i<j) swap(y[i],y[j]);
k=len/2;
while(j>=k){
j-=k;
k/=2;
}
if(j<k) j+=k;
}
}
/*
*做FFT
*len必须为2^k形式,
*on==1时是DFT,on==-1时是IDFT
*/
void fft(Complex y[],int len,int on){
change(y,len);
for(int h=2;h<=len;h<<=1){
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j=0;j<len;j+=h){
Complex w(1,0);
for(int k=j;k<j+h/2;k++){
Complex u=y[k];
Complex t=w*y[k+h/2];
y[k]=u+t;
y[k+h/2]=u-t;
w=w*wn;//旋转因子
}
}
}
if(on==-1)
for(int i=0;i<len;i++)
y[i].x/=len;
}
Complex S[maxn],H[maxn],C[maxn],D[maxn];
bool isprime[maxn];
int prime[maxn],tol;
void make_prime(int n){
for(int i=0;i<=n;i++)
isprime[i]=true;
tol=0;
for(int i=2;i<=n;i++){
if(isprime[i])
prime[tol++]=i;
for(int j=0;j<tol;j++){
if(i*prime[j]<=n)
isprime[i*prime[j]]=false;
else
break;
if(i%prime[j]==0)
break;
}
}
}
int main(){
int a,b,c,num;
char ch;
make_prime(50000);
while(~scanf("%d%d%d",&a,&b,&c)){
if(a==0&&b==0&&c==0) break;
int len=1;
while(len<=4*b) len<<=1;
for(int i=0;i<=b;i++)
if(!isprime[i]) S[i]=H[i]=C[i]=D[i]=Complex(1,0);
else S[i]=H[i]=C[i]=D[i]=Complex(0,0);
for(int i=b+1;i<len;i++)
S[i]=H[i]=C[i]=D[i]=Complex(0,0);
while(c--){
scanf("%d%c",&num,&ch);
if(ch=='S') S[num]=Complex(0,0);
else if(ch=='H') H[num]=Complex(0,0);
else if(ch=='C') C[num]=Complex(0,0);
else D[num]=Complex(0,0);
}
fft(S,len,1);
fft(H,len,1);
fft(C,len,1);
fft(D,len,1);
for(int i=0;i<len;i++)
S[i]=S[i]*H[i]*C[i]*D[i];
fft(S,len,-1);
for(int i=a;i<=b;i++)
printf("%lld\n",(LL)(S[i].x+0.5));
printf("\n");
}
return 0;
}