HDU - 2262 Where is the canteen 高斯消元求期望

题目:有一个n*m的字符矩阵,你要从初始位置到商店去,你每次都选择去一个可达的点(上下左右4个方向),求期望步数。

'@'初始位置,有且只有一个

'#'不能走的点

'$'商店,可能有多个

'.'可以走的点

思路:广搜以便给可达的点编号,列方程高斯消元即可

代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f

int dr[]={-1,1,0,0};
int dc[]={0,0,-1,1};

const double _eps = 1e-12;
const int MAX = 300;
int equ, var;
double mat[MAX][MAX], x[MAX];
int sign(double x) {return (x > _eps) - (x < -_eps);}
int Gauss() {
	int i, j, k, col, max_r, free_num, free_index;
	double ta, tmp;
	for(i = 0; i <= var; ++i) {
		x[i] = 0;
	}
	for(k = col = 0; k < equ && col < var; ++k, ++col) {
		max_r = k;
		for(i = k + 1; i < equ; ++i) {
			if(sign(fabs(mat[i][col]) - fabs(mat[max_r][col])) > 0)
				max_r = i;
		}
		if(max_r != k) {
			for(j = k; j < var + 1; ++j)
				swap(mat[max_r][j], mat[k][j]);
		}
		if(sign(mat[k][col]) == 0)
            return 0;
		for(i = k + 1; i < equ; ++i) {
			if(sign(mat[i][col]) == 0) continue;
			ta = mat[i][col] / mat[k][col];
			for(j = col; j < var + 1; ++j)
				mat[i][j] -= mat[k][j] * ta;
		}
	}
	for(i = k; i < equ; ++i) {
		if(sign(mat[i][col]))
			return 0;
	}
	if(k < var)
        return 0;
	for(i = var - 1; i >= 0; --i) {
		tmp = mat[i][var];
		for(j = i + 1; j < var; ++j)
			if(sign(mat[i][j]) != 0)
				tmp -= mat[i][j] * x[j];
		x[i] = tmp / mat[i][i];
	}
	return 1;
}

const int maxn=300;
struct Node{
    int r,c;
    Node(int _r=0,int _c=0):r(_r),c(_c){}
};
char str[20][20];
int vis[20][20],num[20][20],cnt;
int n,m;
bool judge(int r,int c){
    if(r<0||r>=n||c<0||c>=m||str[r][c]=='#')
        return false;
    return true;
}
int bfs(int r,int c){
    queue<Node> Q;
    mm(vis,-1);
    mm(num,0);
    cnt=0;
    vis[r][c]=cnt++;
    Q.push(Node(r,c));
    int flag=0;
    while(!Q.empty()){
        Node now=Q.front();
        Q.pop();
        if(str[now.r][now.c]=='$')
            flag=1;
        for(int i=0;i<4;i++){
            r=now.r+dr[i];
            c=now.c+dc[i];
            if(!judge(r,c)) continue;
            num[now.r][now.c]++;
            if(vis[r][c]!=-1) continue;
            vis[r][c]=cnt++;
            Q.push(Node(r,c));
        }
    }
    return flag;
}
void build(){
    for(int i=0;i<n;i++)
        for(int j=0;j<m;j++){
            if(vis[i][j]==-1)
                continue;
         //   printf("%d\n",num[i][j]);
            int pos=vis[i][j];
            if(str[i][j]=='$'){
                mat[pos][pos]=1;
                mat[pos][cnt]=0;
                continue;
            }
            mat[pos][pos]=1;
            for(int k=0;k<4;k++){
                int r=i+dr[k];
                int c=j+dc[k];
                if(!judge(r,c)) continue;
                int t=vis[r][c];
                mat[pos][t]=-1.0/num[i][j];
                mat[pos][cnt]+=1.0/num[i][j];
            }
        }
}
int main(){

    while(~scanf("%d%d",&n,&m)){
        for(int i=0;i<n;i++)
            scanf("%s",str[i]);
        int r,c;
        for(int i=0;i<n;i++)
            for(int j=0;j<m;j++)
                if(str[i][j]=='@')
                    r=i,c=j;
        if(!bfs(r,c)){
            printf("-1\n");
            continue;
        }
        mm(mat,0);
        equ=var=cnt;
        build();
        if(Gauss()){
            printf("%.6f\n",x[0]);
        }
        else{
            printf("-1\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值