CodeForces - 17E Palisection 邻接表的回文树

题目:给出一个字符串要求找出多少对有相交部分的回文子串。

思路:直接求相交的不好算,我们可以用总对数减去不想交的回文串的对数。


Manacher算法:

先利用差分数组统计出以输入串的第i个字符结尾的回文串的数量sum1[i],然后令sum2[i] = sum2[i - 1] + sum1[i]作为sum1的前缀和, 那么对于中心为i半径为R[i]的回文串来说, 处在这组回文串左边的的串的贡献就是sum2中连续的一段和, 所以用sum3[i] = sum3[i- 1] + sum2[i]来表示sum2的前缀,然后这一组回文串能找到的与左边回文串的不相交的对数是 sum3[i] - sum3[i - R[i] - 1]。

具体看代码。


代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f

const LL MOD=51123987;
const int maxn=2e6+50;
char str[maxn],s[maxn<<1];//原串,修改后的串
int p[maxn<<1];//以字符s[i]为中心的最长回文子串的最左/右字符到s[i]的长度,p[i]-1就是回文串的长度
int Manacher(char *str,char *s){
    int i,j=0,len,mx=0,res=0;
    s[0]='$';
    for(i=0;str[i]!='\0';i++){
        s[2*i+1]='#';
        s[2*i+2]=str[i];
    }
    len=2*i+1;
    s[len++]='#';
    s[len]='\0';
    for(i=1;i<len;i++){
        if(mx>i)
            p[i]=min(p[2*j-i],mx-i);
        else
            p[i]=1;
        for(;s[i+p[i]]==s[i-p[i]];p[i]++);
        if(p[i]+i>mx){
            mx=p[i]+i;
            j=i;
        }
        res=max(res,p[i]-1);
    }
    return res;//返回最长回文子串的长度
}
LL d[maxn],sum[maxn];
int main(){

    int n;
    while(~scanf("%d",&n)){
        scanf("%s",str);
        Manacher(str,s);
        mm(d,0);
        for(int i=1;i<=2*n;i++){
            if(i%2==1){//回文串长度是偶数
                d[(i+1)/2]++;
                d[(i+1)/2+(p[i]-1)/2]--;
            }
            else{//回文串长度是奇数
                d[i/2]++;
                d[i/2+p[i]/2]--;
            }
        }
        LL all=0;
        sum[0]=0;
        for(int i=1;i<=n;i++){//求出以i结尾的回文串的数目
            sum[i]=sum[i-1]+d[i];
            all=all+sum[i];
        }

//        for(int i=1;i<=n;i++)
//            printf("%d %lld\n",i,sum[i]);

        if(all%2==0)
            all=(all/2)%MOD*((all-1)%MOD)%MOD;
        else
            all=((all-1)/2)%MOD*(all%MOD)%MOD;

        d[0]=0;
        for(int i=1;i<=n;i++){
            sum[i]%=MOD;
            d[i]=(d[i-1]+sum[i])%MOD;
        }

//        PP;
//        for(int i=1;i<=n;i++)
//            printf("%d %lld\n",i,d[i]);

        sum[0]=0;
        for(int i=1;i<=n;i++)
            sum[i]=(sum[i-1]+d[i])%MOD;

//        PP;
//        for(int i=1;i<=n;i++)
//            printf("%d %lld\n",i,sum[i]);

        LL ans=0;
        for(int i=1;i<=2*n;i++){
            if(i%2==1){//回文串长度是偶数
                int pos=(i+1)/2-1;
                int x=pos-1;
                int y=pos-(p[i]-1)/2-1;
                if(x<=0)
                    continue;
                y=max(0,y);
                ans=(ans+(sum[x]-sum[y])%MOD)%MOD;
                ans=(ans+MOD)%MOD;
//                printf("i=%d  pi=%d  %d  %d\n",i,p[i],x,y);
            }
            else{//回文串长度是奇数
                int pos=i/2;
                int x=pos-1;
                int y=pos-p[i]/2-1;
                if(x<0)
                    continue;
                y=max(0,y);
                ans=(ans+(sum[x]-sum[y])%MOD)%MOD;
                ans=(ans+MOD)%MOD;
//                printf("i=%d  pi=%d  %d  %d\n",i,p[i],x,y);
            }
        }
        ans=(all-ans)%MOD;
        ans=(ans+MOD)%MOD;
        printf("%lld\n",ans);
    }
    return 0;
}


回文树:

这种思路就比较清晰了,只要把next改成邻接表就行了,直接用数组会MLE


代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f

const LL MOD=51123987;
const int MAXN = 2e6+50, SIZE = 26;
struct Link_list{
    int head[MAXN],next[MAXN],ch[MAXN],id[MAXN],tot;
    void _clear(){
        mm(head,-1);
        tot=0;
    }
    void _clear(int x){
        head[x]=-1;
    }
    int _find(int x,int y){
        for(int i=head[x];i!=-1;i=next[i]){
            if(ch[i]==y)
                return id[i];
        }
        return 0;
    }
    void _insert(int x,int y,int z){
        ch[tot]=y;
        id[tot]=z;
        next[tot]=head[x];
        head[x]=tot++;
    }
};
struct Palindromic_Tree {
	Link_list nxt;
	int fail[MAXN];//fail指针
	int cnt[MAXN];//表示节点i表示的回文串的个数(建树时求出的不是完全的,最后Count()函数跑一遍以后才是正确的)
	int num[MAXN];//表示以节点i表示的最长回文串的最右端点为回文串结尾的回文串个数
	int len[MAXN];//len[i]表示节点i表示的回文串的长度(一个节点表示一个回文串)
	int S[MAXN];//存放添加的字符
	int last;//指向上一个字符所在的节点,方便下一次add
	int n;//字符数组指针
	int p;//节点指针
	int NewNode(int L) {//新建节点
		nxt._clear(p);
		cnt[p] = num[p] = 0;
		len[p] = L;
		return p++;
	}
	void Init() {//初始化
	    nxt._clear();
		p = n = 0;
		NewNode(0); NewNode(-1);
		last = 0;
		S[n] = -1;//开头放一个字符集中没有的字符,减少特判
		fail[0] = 1;
	}
	int GetFail(int x) {//和KMP一样,失配后找一个尽量最长的
		while(S[n - len[x] - 1] != S[n]) x = fail[x];
		return x;
	}
	int Add(int c) {
		S[++n] = c;
		int cur = GetFail(last);//通过上一个回文串找这个回文串的匹配位置
		if(!nxt._find(cur,c)) {//如果这个回文串没有出现过,说明出现了一个新的本质不同的回文串
			int now = NewNode(len[cur] + 2);//新建节点
			fail[now] = nxt._find(GetFail(fail[cur]),c);//和AC自动机一样建立fail指针,以便失配后跳转
			nxt._insert(cur,c,now);
			num[now] = num[fail[now]] + 1;
		}
		last = nxt._find(cur,c);
		cnt[last]++;
		return num[last];
	}
	void Count() {
		for(int i = p - 1; i >= 0; --i)
			cnt[fail[i]] += cnt[i];
		//父亲累加儿子的cnt,因为如果fail[v]=u,则u一定是v的子回文串!
	}
}tree;
char str[MAXN];
LL sum[MAXN];
int main(){

    int n;
    while(~scanf("%d",&n)){
        scanf("%s",str+1);
        tree.Init();
        sum[0]=0;
        for(int i=1;i<=n;i++){
            sum[i]=sum[i-1]+tree.Add(str[i]-'a');
        }
        LL all=sum[n];
        if(all%2==0){
            all=(all/2)%MOD*((all-1)%MOD)%MOD;
        }
        else{
            all=((all-1)/2)%MOD*(all%MOD)%MOD;
        }
        LL ans=0;
        tree.Init();
        for(int i=n;i>=1;i--){
            LL x=tree.Add(str[i]-'a');
            ans=(ans+x*sum[i-1]%MOD)%MOD;
        }
        all=(all-ans)%MOD;
        all=(all+MOD)%MOD;
        printf("%lld\n",all);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值