HDU - 2829 Lawrence

本文介绍了一种算法问题,即将一个序列分为m+1段,使得每段的价值(任意两数乘积之和)总和最小。通过动态规划与斜率优化技巧,实现了高效的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:将一个序列分成m+1段,每段的价值定义为任意两个数的乘积之和,求总的最小价值

思路:

cost[i][j]表示i到j成为一段的价值

设dp[i][j]表示前j个数分成i段的最小价值

dp[i][j]=min{dp[i-1][k]+cost[k+1][j]}

cost[1][i]=cost[1][k]+cost[k+1][i]+sum[k]*(sum[i]-sum[k])

将cost[k+1][i]代入上面的式子,得

dp[i][j]=min{dp[i-1][k]+cost[1][j]-cost[1][k]-sum[k]*(sum[j]-sum[k])}

然后斜率优化即可

代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f
//0x3f3f3f3f

const int maxn=1e3+5;
int arr[maxn],sum[maxn],cost[maxn];
int dp[maxn][maxn];
int q[maxn];
int head,tail,n,m;
int getdp(int i,int j,int k){
    return dp[i-1][k]+cost[j]-cost[k]-sum[k]*(sum[j]-sum[k]);
}
int gety(int i,int k,int j){//yj-yk
    return dp[i-1][j]-cost[j]+sum[j]*sum[j]-(dp[i-1][k]-cost[k]+sum[k]*sum[k]);
}
int getx(int k,int j){//xj-xk
    return sum[j]-sum[k];
}
int main(){

//    freopen("D:\\input.txt","r",stdin);
//    freopen("D:\\output.txt","w",stdout);
    while(~scanf("%d%d",&n,&m)){
        if(n==0&&m==0)
            break;
        sum[0]=0;
        for(int i=1;i<=n;i++){
            scanf("%d",&arr[i]);
            sum[i]=sum[i-1]+arr[i];
            cost[i]=cost[i-1]+sum[i-1]*arr[i];
        }
        for(int i=1;i<=n;i++)
            dp[1][i]=cost[i];
        m++;
        for(int i=2;i<=m;i++){
            head=0;
            tail=-1;
            q[++tail]=i-1;
            for(int j=i;j<=n;j++){
                while(head<tail&&gety(i,q[head],q[head+1])<=sum[j]*getx(q[head],q[head+1]))
                    head++;
                dp[i][j]=getdp(i,j,q[head]);
                while(head<tail&&gety(i,q[tail-1],q[tail])*getx(q[tail],j)>=gety(i,q[tail],j)*getx(q[tail-1],q[tail]))
                    tail--;
                q[++tail]=j;
            }
        }
        printf("%d\n",dp[m][n]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值