题目:将一个序列分成m+1段,每段的价值定义为任意两个数的乘积之和,求总的最小价值
思路:
cost[i][j]表示i到j成为一段的价值
设dp[i][j]表示前j个数分成i段的最小价值
dp[i][j]=min{dp[i-1][k]+cost[k+1][j]}
cost[1][i]=cost[1][k]+cost[k+1][i]+sum[k]*(sum[i]-sum[k])
将cost[k+1][i]代入上面的式子,得
dp[i][j]=min{dp[i-1][k]+cost[1][j]-cost[1][k]-sum[k]*(sum[j]-sum[k])}
然后斜率优化即可
代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<numeric>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define INF 0x3f3f3f3f
#define mm(a,b) memset(a,b,sizeof(a))
#define PP puts("*********************");
template<class T> T f_abs(T a){ return a > 0 ? a : -a; }
template<class T> T gcd(T a, T b){ return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
// 0x3f3f3f3f3f3f3f3f
//0x3f3f3f3f
const int maxn=1e3+5;
int arr[maxn],sum[maxn],cost[maxn];
int dp[maxn][maxn];
int q[maxn];
int head,tail,n,m;
int getdp(int i,int j,int k){
return dp[i-1][k]+cost[j]-cost[k]-sum[k]*(sum[j]-sum[k]);
}
int gety(int i,int k,int j){//yj-yk
return dp[i-1][j]-cost[j]+sum[j]*sum[j]-(dp[i-1][k]-cost[k]+sum[k]*sum[k]);
}
int getx(int k,int j){//xj-xk
return sum[j]-sum[k];
}
int main(){
// freopen("D:\\input.txt","r",stdin);
// freopen("D:\\output.txt","w",stdout);
while(~scanf("%d%d",&n,&m)){
if(n==0&&m==0)
break;
sum[0]=0;
for(int i=1;i<=n;i++){
scanf("%d",&arr[i]);
sum[i]=sum[i-1]+arr[i];
cost[i]=cost[i-1]+sum[i-1]*arr[i];
}
for(int i=1;i<=n;i++)
dp[1][i]=cost[i];
m++;
for(int i=2;i<=m;i++){
head=0;
tail=-1;
q[++tail]=i-1;
for(int j=i;j<=n;j++){
while(head<tail&&gety(i,q[head],q[head+1])<=sum[j]*getx(q[head],q[head+1]))
head++;
dp[i][j]=getdp(i,j,q[head]);
while(head<tail&&gety(i,q[tail-1],q[tail])*getx(q[tail],j)>=gety(i,q[tail],j)*getx(q[tail-1],q[tail]))
tail--;
q[++tail]=j;
}
}
printf("%d\n",dp[m][n]);
}
return 0;
}