度熊的哈希 hdu5685

时间限制: 1 Sec 内存限制: 128 MB
题目描述
度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串。现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串的哈希值。一个字符串的哈希值,由以下公式计算得到:

H(s)=∏ (Si−28) (mod 9973)

Si代表 S[i] 字符的 ASCII 码, ∏代表连乘,1<=i<=len(s)。

请帮助度熊计算大字符串中任意一段的哈希值是多少。

输入
多组测试数据,每组测试数据第一行是一个正整数N,代表询问的次数,第二行一个字符串,代表题目中的大字符串,接下来N行,每行包含两个正整数a和b,代表询问的起始位置以及终止位置。

输出
对于每一个询问,输出一个整数值,代表大字符串从 a 位到 b 位的子串的哈希值(a不一定小于b)。

样例输入
2
ACMlove2015
1 11
8 10
1
testMessage
1 1
样例输出
6891
9240
88
提示
第一组样例中[8, 10], 代表将字符串第8,9,10个字符通过上面的公式连乘取模,得到的结果为哈希值。

Chr(2)=50, Chr(0)=48, Chr(1)=49

答案为(50-28)(48-28)(49-28) (mod 9973)=9240

1≤N≤1,000

1≤len(string)≤100,000

1≤a,b≤len(string)
用朴素的线段树可以做
但我刚开始区间理解错了
以为l>r就是l~len & 1~r 了

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MOD 9973
#define p2 (p<<1)
#define p3 ((p<<1)|1)
int n,len;
char s[100005];
int a[100005],tr[400005];
void build(int st,int ed,int p)
{
    if (st==ed)
    {
        tr[p]=a[st];
        return;
    }
    int mid=(st+ed)>>1;
    build(st,mid,p2);
    build(mid+1,ed,p3);
    tr[p]=(tr[p2]*tr[p3])%MOD;
}
int query(int st,int ed,int l,int r,int p)
{
    if (st==l && ed==r)
        return tr[p];
    int mid=(st+ed)>>1,ret;
    if (r<=mid)
        ret=query(st,mid,l,r,p2)%MOD;
    else if (l>=mid+1)
        ret=query(mid+1,ed,l,r,p3)%MOD;
    else ret=query(st,mid,l,mid,p2)*query(mid+1,ed,mid+1,r,p3)%MOD;
    return ret;
}
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        scanf("%s",s+1);
        len=strlen(s+1);
        for (int i=1;i<=len;i++)
            a[i]=(int)s[i]-28;
        build(1,len,1);
        for (int i=1;i<=n;i++)
        {
            int l,r;
            scanf("%d%d",&l,&r);
            if (l>r) swap(l,r);
            printf("%d\n",query(1,len,l,r,1));
        }
    }
    return 0;
}

然而 逆元更简便 要用到费马小定理

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MOD 9973
#define p2 (p<<1)
#define p3 ((p<<1)|1)
int n,len;
char s[100005];
int a[100005];
int qp(int x,int y)
{
    int ret=1;
    while (y)
    {
        if (y&1) ret=(ret*x)%MOD;
        x=(x*x)%MOD;
        y>>=1;
    }
    return ret;
}
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        scanf("%s",s+1);
        len=strlen(s+1);
        a[0]=1;
        for (int i=1;i<=len;i++)
            a[i]=a[i-1]*((int)s[i]-28)%MOD;
        for (int i=1;i<=n;i++)
        {
            int l,r;
            scanf("%d%d",&l,&r);
            if (r<l) swap(r,l);
            printf("%d\n",a[r]*qp(a[l-1],MOD-2)%MOD);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值