KNN算法

KNN算法是机器学习中的分类算法,通过计算待分类数据与最近的K个样本的距离来决定分类。K值的选择对结果影响较大。本文介绍了KNN的基本原理,并提供了C++实现的简单示例,指出其效率低下的问题,提到了未来可能使用K-D树进行优化。
摘要由CSDN通过智能技术生成

KNN算法是机器学习里面常用的一种分类算法,假设一个样本空间被分为几类,然后给定一个待分类所有的特征数

据,通过计算距离该数据的最近的K个样本来判断这个数据属于哪一类。如果距离待分类属性最近的K个类大多数都

属于某一个特定的类,那么这个待分类的数据也就属于这个类。

 

Contents

 

   1. KNN算法介绍

   2. KNN算法的C++实现

 

 

1. KNN算法介绍

 

   K Nearest Neighbor算法,简称KNN算法,它是一种比较简单的机器学习算法,它的原理也比较简单。下面用

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值