题目:http://poj.org/problem?id=1222
题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操
作使灯全灭?
分析:这个问题是很经典的高斯消元问题。同一个按钮最多只能被按一次,因为按两次跟没有按是一样的效果。那么
对于每一个灯,用1表示按,0表示没有按,那么每个灯的状态的取值只能是0或1。列出30个方程,30个变
元,高斯消元解出即可,因为解只能是0或者1,所以方程组是一定有解。
代码:
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
using namespace std;
const int N = 35;
int gcd(int a,int b)
{
return b ? gcd(b,a%b):a;
}
int lcm(int a,int b)
{
return a / gcd(a,b) * b;
}
void Gauss(int a[][N],int n,int m,int &r,int &c)
{
r = c = 0;
for(; r<n && c<m; r++,c++)
{
int maxi = r;
for(int i=r+1; i<n; i++)
if(abs(a[i][c]) > abs(a[maxi][c]))
maxi = i;
if(maxi != r)
{
for(int i=r; i<m+1; i++)
swap(a[r][i],a[maxi][i]);
}
if(a[r][c] == 0)
{
r--;
continue;
}
for(int i=r+1; i<n; i++)
{
if(a[i][c] != 0)
{
int x = abs(a[i][c]);
int y = abs(a[r][c]);
int LCM = lcm(x,y);
int tx = LCM / x;
int ty = LCM / y;
if(a[i][c] * a[r][c] < 0)
ty = -ty;
for(int j=c; j<m+1; j++)
a[i][j] = ((a[i][j] % 2 * tx % 2 - a[r][j] % 2 * ty % 2) % 2 + 2) % 2;
}
}
}
}
int Rewind(int a[][N],int x[],int r,int c)
{
for(int i=r-1; i>=0; i--)
{
int t = a[i][c] % 2;
for(int j=i+1; j<c; j++)
{
if(a[i][j] != 0)
t -= a[i][j] % 2 * x[j] % 2;
}
x[i] = t / a[i][i] % 2;
x[i] = (x[i] + 2) % 2;
}
return 0;
}
int a[N][N];
int x[N];
int main()
{
int cas = 1;
int n,m,T;
scanf("%d",&T);
while(T--)
{
n = m = 30;
memset(a,0,sizeof(a));
for(int i=0; i<5; i++)
{
for(int j=0; j<6; j++)
{
if(i >= 1) a[6*i+j][6*(i-1)+j] = 1;
if(i <= 3) a[6*i+j][6*(i+1)+j] = 1;
if(j >= 1) a[6*i+j][6*i+j-1] = 1;
if(j <= 4) a[6*i+j][6*i+j+1] = 1;
a[6*i+j][6*i+j] = 1;
scanf("%d",&a[6*i+j][30]);
}
}
int r,c;
int cnt = 0;
Gauss(a,n,m,r,c);
Rewind(a,x,r,c);
printf("PUZZLE #%d\n",cas++);
for(int i=0; i<30; i++)
{
cnt++;
if(cnt % 6) printf("%d ",x[i]);
else printf("%d\n",x[i]);
}
}
return 0;
}
题目:http://poj.org/problem?id=1830
题意:给定个开关,其中,然后给定这个开关的初始状态和最终状态,再给定一些关系,表示操作一
个开关另一些开关的变化情况,求有多少种方法能从初始状态变为最终状态。
分析:如果只有唯一解,则输出1,如果有多个变元,变元个数为,那么答案等于,否则没有解。
代码:
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
using namespace std;
typedef long long LL;
const int N = 35;
int gcd(int a,int b)
{
return b ? gcd(b,a%b):a;
}
int lcm(int a,int b)
{
return a / gcd(a,b) * b;
}
void Gauss(int a[][N],int n,int m,int &r,int &c)
{
r = c = 0;
for(; r<n && c<m; r++,c++)
{
int maxi = r;
for(int i=r+1; i<n; i++)
if(abs(a[i][c]) > abs(a[maxi][c]))
maxi = i;
if(maxi != r)
{
for(int i=r; i<m+1; i++)
swap(a[r][i],a[maxi][i]);
}
if(a[r][c] == 0)
{
r--;
continue;
}
for(int i=r+1; i<n; i++)
{
if(a[i][c] != 0)
{
int x = abs(a[i][c]);
int y = abs(a[r][c]);
int LCM = lcm(x,y);
int tx = LCM / x;
int ty = LCM / y;
if(a[i][c] * a[r][c] < 0)
ty = -ty;
for(int j=c; j<m+1; j++)
a[i][j] = ((a[i][j] % 2 * tx % 2 - a[r][j] % 2 * ty % 2) % 2 + 2) % 2;
}
}
}
}
LL Rewind(int a[][N],int n,int m,int r,int c)
{
for(int i=r; i<n; i++)
if(a[i][c] != 0)
return -1;
if(m == r) return 1;
if(m > r) return (LL)1<<(m-r);
if(m < r) return -1;
}
int a[N][N];
int t1[N],t2[N];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int num,n,m;
scanf("%d",&num);
n = m = num;
memset(a,0,sizeof(a));
for(int i=0; i<num; i++)
scanf("%d",&t1[i]);
for(int i=0; i<num; i++)
{
scanf("%d",&t2[i]);
if(t2[i] != t1[i])
a[i][num] = 1;
a[i][i] = 1;
}
while(1)
{
int x,y;
scanf("%d%d",&x,&y);
if(x == 0 && y == 0) break;
a[y-1][x-1] = 1;
}
int r,c;
Gauss(a,n,m,r,c);
LL ans = Rewind(a,n,m,r,c);
if(ans == -1) puts("Oh,it's impossible~!!");
else printf("%I64d\n",ans);
}
return 0;
}
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3359
题意:有一个图像模糊处理的算法,图像设置为一定灰度后是一个不太大的矩阵,对这个矩阵通过一个算法处理后得
到另一个矩阵,那么图像就会变得模糊,这个算法就是求某个元素周围距离在内的平均值。现在给定模糊图
像的矩阵,把它还原为清晰图像对应的矩阵。具体变换如下图所示
分析:这个题比较有意思,涉及到图像处理的算法,当然这个我们可以设每个矩阵里的元素对应一个未知数,那么一
共有个未知数,而某个元素在距离为以内的所有元素都与它有关系,那么可以得到个方程形成的
方程组。注意这里的数字为实数,所以不必像整数求最大公约数那样消元,直接做就行了。
代码:
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
using namespace std;
const int N = 105;
void Gauss(double a[][N],int n,int m,int &r,int &c)
{
r = c = 0;
for(; r<n && c<m; r++,c++)
{
int maxi = r;
for(int i=r+1; i<n; i++)
if(fabs(a[i][c]) > fabs(a[maxi][c]))
maxi = i;
if(maxi != r)
{
for(int i=r; i<m+1; i++)
swap(a[r][i],a[maxi][i]);
}
for(int i=r+1; i<n; i++)
{
if(a[i][c])
{
double t = -a[i][r] / a[r][r];
for(int j=r; j<m+1; j++)
a[i][j] += t * a[r][j];
}
}
}
}
void Rewind(double a[][N],double x[],int n,int m,int r,int c)
{
for(int i=r-1; i>=0; i--)
{
double t = a[i][c];
for(int j=i+1; j<c; j++)
t -= a[i][j] * x[j];
x[i] = t / a[i][i];
}
}
int dist(int x1,int y1,int x2,int y2)
{
return abs(x1 - x2) + abs(y1 - y2);
}
double a[N][N];
double t[N][N];
double x[N];
int main()
{
int n,m;
int w,h,d;
bool flag = 1;
while(scanf("%d%d%d",&w,&h,&d)!=EOF)
{
if(w == 0 && h == 0 && d == 0) break;
if(flag) flag = 0;
else puts("");
for(int i=0; i<h; i++)
{
for(int j=0; j<w; j++)
scanf("%lf",&t[i][j]);
}
n = m = w * h;
memset(a,0,sizeof(a));
for(int i=0; i<h; i++)
{
for(int j=0; j<w; j++)
{
int cnt = 0;
for(int k=0; k<h; k++)
{
for(int r=0; r<w; r++)
{
if(dist(i,j,k,r) <= d)
{
a[i*w+j][k*w+r] = 1;
cnt++;
}
}
}
a[i*w+j][m] = t[i][j] * cnt;
}
}
int r,c;
Gauss(a,n,m,r,c);
Rewind(a,x,n,m,r,c);
for(int i=0; i<h; i++)
{
for(int j=0; j<w; j++)
printf("%8.2f",x[i*w+j]);
puts("");
}
}
return 0;
}