HDU4607(求树中的最长链)

题目:Park Visit


题意:给定一棵树,从树中的任意选一个顶点出发,遍历K个点的最短距离是多少?(每条边的长度为1)

解析:就是求树的最长链,假设求出的树的最长链所包含的点数为m,那么如果K<=m,那么答案就是K-1,否则就是(K-m)
*2+m-1

 

找树中最长链方法是:

可以通过经典的O(n)的算法求出树的直径。做法是从任意一点开始DFS或者BFS一次求出一个最远的点,这是直径的一个端点;

再从这个最远点开始再次DFS或者BFS,再找到的最远点就是直径的另外一个端点。


#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;

const int N=200010;

int head[N],to[N],next[N],w[N];
int dis[N],que[N];
bool vis[N];
int edge,m,n;

void init()
{
    memset(head,-1,sizeof(head));
    edge=0;
}

void add(int u,int v,int c)
{
    to[edge]=v,w[edge]=c,next[edge]=head[u],head[u]=edge++;
    to[edge]=u,w[edge]=c,next[edge]=head[v],head[v]=edge++;
}

void bfs(int s)
{
    memset(vis,0,sizeof(vis));
    memset(dis,0,sizeof(dis));
    int l,r,v,u;
    l=r=0;
    vis[s]=1;
    dis[s]=0;
    que[r++]=s;
    while(r>l)
    {
        u=que[l++];
        for(int i=head[u]; ~i; i=next[i])
        {
            if(!vis[v=to[i]])
            {
                vis[v]=1;
                dis[v]=dis[u]+w[i];
                que[r++]=v;
            }
        }
    }
}

int treediameter(int s)
{
    int u,maxl;
    bfs(s);
    maxl=0,u=s;
    for(int i=1; i<=n; i++)
        if(dis[i]>maxl)
            u=i,maxl=dis[i];
    bfs(u);
    maxl=0;
    for(int i=1; i<=n; i++)
        if(dis[i]>maxl)
            maxl=dis[i];
    return maxl;
}

int main()
{
    int u,v,d=1,t,i,j,x;
    scanf("%d",&t);
    while(t--)
    {
        init();
        scanf("%d%d",&n,&m);
        for(i=1;i<=n-1;i++)
        {
            scanf("%d%d",&u,&v);
            add(u,v,1);
        }
        int ans=treediameter(1);
        ans++;
        while(m--)
        {
            scanf("%d",&x);
            if(x<=ans) printf("%d\n",x-1);
            else       printf("%d\n",(x-ans)*2+ans-1);
        }
    }
    return 0;
}


好的,关于 HDU4992 所有原根的问题,我可以给出以下解答: 1. 首先,我们需要知道什么是原根。原根是指模 n 意义下,所有与 n 互质的数 a 的最小正整数 k 次幂对 n 取模的值覆盖了所有与 n 互质的数。简单来说,就是如果一个数 a 是模 n 意义下的原根,那么 a 的任何正整数次幂对 n 取模的值都不相同,且能覆盖所有与 n 互质的数。 2. 为了模 n 意义下的所有原根,我们需要先出与 n 互质的数的个数 phi(n)。phi(n) 可以使用欧拉函数出。 3. 然后,我们需要枚举模 n 意义下的所有数,判断它是否是原根。具体来说,对于每个 a,我们需要判断 a 的每个小于 phi(n) 的正整数次幂对 n 取模的值是否都不相同,且能覆盖所有与 n 互质的数。如果是,那么 a 就是模 n 意义下的原根。 4. 代码实现可以参考以下 Java 代码: ``` import java.util.*; public class Main { static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static int phi(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res = res / i * (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res = res / n * (n - 1); } return res; } static int pow(int a, int b, int mod) { int res = 1; while (b > 0) { if ((b & 1) != 0) { res = res * a % mod; } a = a * a % mod; b >>= 1; } return res; } static boolean check(int a, int n, int phi) { for (int i = 1, j = pow(a, i, n); i <= phi; i++, j = j * a % n) { if (j == 1) { return false; } } return true; } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()) { int n = scanner.nextInt(); int phi = phi(n); List<Integer> ans = new ArrayList<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1 && check(i, n, phi)) { ans.add(i); } } Collections.sort(ans); for (int x : ans) { System.out.print(x + " "); } System.out.println(); } } } ``` 其,gcd 函数用于最大公约数,phi 函数用于欧拉函数,pow 函数用于快速幂模,check 函数用于判断一个数是否是原根。在主函数,我们依次读入每个 n,出 phi(n),然后枚举模 n 意义下的所有数,判断它是否是原根,将所有原根存入一个 List ,最后排序输出即可。 希望我的回答能够帮到你,如果你有任何问题,欢迎随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值