题目
题意:
给你一组数字,你可以将任意区间的数字全部变为该区间的中位数(若区间长度为偶数则取左),问是否能将该数组中的数字全部变为同一个数字k。
思路:
如果我们能够变出两个或以上相连并且相同数,那么这两个数就可以同化周围的所有数字,当他同化到值为k的数字的旁边时,如果该数字比k小,那么我们无法将该数字变成k,因为题目中说了“若区间长度为偶数则取左”,所以我们的目标就变成了:变出两个或以上相连且相同的比k大的数,这样我们就能够通过这两个数将整个数组中的数字全都变成k(出现了!究极白嫖怪!)。那么我们该如何变出两个或以上相连且相同的比k大的数呢,只需要一个大于等于k的数字周围(两格范围内)也存在一个大于等于k的数即可(具体原因一想就能明白)。
代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
const int N=2e5+7;
const int inf=0x3f3f3f3f;
signed main()
{
IOS;
int t;
cin>>t;
while(t--)
{
int n,k,arr[200005],ass=0;
cin>>n>>k;
for(int i=1;i<=n;i++)
{
cin>>arr[i];
if(arr[i]==k)
ass=1;
}
if(ass==0)
cout<<"no"<<endl;
else if(n==1)
cout<<"yes"<<endl;
else
{
int ans=0;
for(int i=1;i<=n;i++)
{
if(arr[i]>=k&&arr[i+1]>=k&&i+1<=n||arr[i]>=k&&arr[i+2]>=k&&i+2<=n)
{
cout<<"yes"<<endl;
ans=1;
break;
}
}
if(!ans)
cout<<"no"<<endl;
}
}
return 0;
}