题目链接
题意:
已知一个二叉树的中序遍历的结果是一个递增的排列,给你这些节点的权值,根节点的值等于两个子节点的乘积加上他本身的权值,如果子节点为空则视为1,求这个二叉树能达到的最大值以及在该结果下的先序遍历序列。
思路:
首先,我们需要知道,中序遍历的情况下,每一个节点的两边都会是它的子节点或者子节点的子节点等等,所以我们只需要用一个区间dp来维护每一个小的二叉树的最大值即可,状态转移方程为:
dp[j][j+i-1] = dp[j][k-1]*dp[k+1][j+i-1]+dp[k][k];
这里注意,我们要对这个dp数组做一些预处理,每当遍历到一个新的dp[j][j+i-1]时,都将该区间的根节点的左子节点都视为1,给予他一个初值,如果左子节点不为空,那么这个值一定会被替代,如果为空那么该值就是最大值。
而先序遍历则需要一个r[N][N]数组来记录每一个区间的根节点,然后按照先序遍历的方式去遍历这个记录每个区间的根节点的数组即可。
代码:
#include<bits/stdc++.h>
#define int long long
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
const int N=1e3+7;
const int inf=0x3f3f3f;
const int INF=9223372036854775807;
const int mod=1e9+7;
const double eps=1e-8;
using namespace std;
int r[N][N],dp[N][N],a[N];
void print(int l,int rr)
{
if(l>rr) return ;
cout<<r[l][rr]<<" ";
if(l==rr) return ;
else print(l,r[l][rr]-1),print(r[l][rr]+1,rr);
}
signed main()
{
IOS;
int n;
cin>>n;
for(int i=1;i<=n;i++)
cin>>dp[i][i];
for(int i=1;i<=n;i++)
{
for(int j=1;j+i-1<=n;j++)
{
dp[j][j+i-1]=dp[j+1][j+i-1]+dp[j][j];
r[j][j+i-1]=j;
for(int k=j;k<=j+i-1;k++)
{
if(dp[j][j+i-1]<dp[j][k-1]*dp[k+1][j+i-1]+dp[k][k])
{
dp[j][j+i-1]=dp[j][k-1]*dp[k+1][j+i-1]+dp[k][k];
r[j][j+i-1]=k;
}
}
}
}
cout<<dp[1][n]<<endl;
print(1,n);
return 0;
}
/*
*/