这道题和前两天做过的那个噪声污染的题是很类似的,求s到d的所有路径中能通过的最多人数大的路径的流量
那么也是Floyd的思想,如果1和4之间插入了3,使得1到4的流量增加,那么就是插入3
即满足条件:(1,3)> (1,4) && (3,4)>(1,4),取1,3 和3,4中较小的一个作为1,4的新值
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int n, r, s, d, t, map[N][N];
int main()
{
int icase = 1;
while ( scanf("%d%d", &n, &r) != EOF && !( n == 0 && r == 0 ) ) {
memset( map, 0, sizeof(map) );
for ( int i = 1; i <= r; ++i ) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
map[u][v] = map[v][u] = c;
}
scanf("%d%d%d", &s, &d, &t);
for ( int k = 1; k <= n; ++k )
for ( int i = 1; i <= n; ++i )
for ( int j = 1; j <= n; ++j )
if ( i != k && i != j && j != k && map[i][j] < map[i][k] && map[i][j] < map[k][j] ) map[i][j] = min( map[i][k], map[k][j] );
int ans;
map[s][d]--;
if ( t%map[s][d] == 0 ) ans = t/map[s][d];
else ans = t/map[s][d] + 1;
printf("Scenario #%d\nMinimum Number of Trips = %d\n\n", icase++, ans );
}
}