hdu-6180-Schedule

本文介绍了一种解决机器在多个区间运行的问题,通过优化算法找出使用最少机器情况下的最短运行时间。采用区间排序及合并策略,减少冗余计算,提高算法效率。

题意:给一些区间,每台机器在这些区间中运行,但是,一台机器最多只能在一段区间内运行,(在相同的地方有多个区间则需要多个机器),并且,机器关掉不能再开,求:使用最少机器的情况下的最短运行时间。

思路:先将区间进行从小到大排序,在这些区间内的最大相交区间数必然就是需要的最少机器数,然后,考虑最短时间,按照从小到大的顺序依次考虑区间,假设我们当前已经至少需要k个机器,我们先在要考虑第 i 个区间,这个区间要从前 i 区间中,开始找,按照操作的顺序从后往前找到第一个没有与该区间重叠的那个机器,(意思就是,改区间要加入离他最近的,且没有重叠部分的那个区间所使用的那个机器中去)。

如果是这种做法,好吧,我TLE了。

我们再考虑一下再将区间分割,

在上图中我们假设现在有上面4个区间,那么我们可以把重叠的部分拿出来,这部分必然要另外要一台机器,我们便可以让(1,3)(4,5)(6,7)(8,10)在同一个机器上运行,而不会影响答案,而重叠的那部分则另外用台机器。

然后代码:在一条线上有2*n个点,区间开头标记为1,结束标记为-1.按照坐标大小排序,用o(n)扫过去,出现的最大数就是机器最大数,当开始的区间个数大于结束区间个数增加时,说明此时的机器数不得不加1,那么这个地方就是这个机器开始的坐标。再用O(n)扫回来,同理。当机器数增加时此时的数目正好是这个机器结束的时间。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#define siz 100005
#define LL long long

namespace fastIO {
	#define BUF_SIZE 100000
	//fread -> read
	bool IOerror = 0;
	inline char nc() {
		static char buf[BUF_SIZE], *p1 = buf + BUF_SIZE, *pend = buf + BUF_SIZE;
		if(p1 == pend) {
			p1 = buf;
			pend = buf + fread(buf, 1, BUF_SIZE, stdin);
			if(pend == p1) {
				IOerror = 1;
				return -1;
			}
		}
		return *p1++;
	}
	inline bool blank(char ch) {
		return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
	}
	inline void read(int &x) {
		char ch;
		while(blank(ch = nc()));
		if(IOerror)
			return;
		for(x = ch - '0'; (ch = nc()) >= '0' && ch <= '9'; x = x * 10 + ch - '0');
	}
	#undef BUF_SIZE
};
using namespace fastIO;
using namespace std;

int n;
struct node{
    int x,is;
    bool operator < (const node &r) const{
        if(r.x == x) return is<r.is;
        return x<r.x;
    }
};

node gp[siz*2];
int L[siz],R[siz];

void solve(){
    int m = n * 2;
    sort(gp+1,gp+1+m);
    int k = 0,cnt = 0;
    LL ans = 0;

    for(int i = 1;i<=m;i++){
        k += gp[i].is;
        if(k>cnt){
            cnt = k;
            L[k] = gp[i].x;
        }
    }
    k = cnt = 0;
    for(int i = m;i>=1;i--){
        k -= gp[i].is;
        if(k>cnt){
            cnt = k;
            R[k] = gp[i].x;
        }
    }
    for(int i=1;i<=cnt;i++){
        ans += 1ll*(R[i] - L[i]);
    }
    printf("%d %lld\n",cnt,ans);
}
int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        read(n);
        //scanf("%d",&n);
        for(int i=1;i<=n;i++){
            int u,v;
            //scanf("%d%d",&u,&v);
            read(u);
            read(v);
            gp[i * 2 - 1].x = u;
            gp[i * 2 - 1].is = 1;
            gp[i * 2].x = v;
            gp[i * 2].is = -1;
        }
        //)
        solve();
    }
    return 0;
}


HDU-3480 是一个典型的动态规划问题,其题目标题通常为 *Division*,主要涉及二维费用背包问题或优化后的动态规划策略。题目大意是:给定一个整数数组,将其划分为若干个连续的子集,每个子集最多包含 $ m $ 个元素,并且每个子集的最大值与最小值之差不能超过给定的阈值 $ t $,目标是使所有子集的划分代价总和最小。每个子集的代价是该子集最大值与最小值的差值。 ### 动态规划思路 设 $ dp[i] $ 表示前 $ i $ 个元素的最小代价。状态转移方程如下: $$ dp[i] = \min_{j=0}^{i-1} \left( dp[j] + cost(j+1, i) \right) $$ 其中 $ cost(j+1, i) $ 表示从第 $ j+1 $ 到第 $ i $ 个元素构成一个子集的代价,即 $ \max(a[j+1..i]) - \min(a[j+1..i]) $。 为了高效计算 $ cost(j+1, i) $,可以使用滑动窗口或单调队列等数据结构来维护区间最大值与最小值,从而将时间复杂度优化到可接受的范围。 ### 示例代码 以下是一个简化版本的动态规划实现,使用暴力方式计算区间代价,适用于理解问题结构: ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 10010; int a[MAXN]; int dp[MAXN]; int main() { int T, n, m; cin >> T; for (int Case = 1; Case <= T; ++Case) { cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; dp[0] = 0; for (int i = 1; i <= n; ++i) { dp[i] = INF; int mn = a[i], mx = a[i]; for (int j = i; j >= max(1, i - m + 1); --j) { mn = min(mn, a[j]); mx = max(mx, a[j]); if (mx - mn <= T) { dp[i] = min(dp[i], dp[j - 1] + mx - mn); } } } cout << "Case " << Case << ": " << dp[n] << endl; } return 0; } ``` ### 优化策略 - **单调队列**:可以使用两个单调队列分别维护当前窗口的最大值与最小值,从而将区间代价计算的时间复杂度从 $ O(n^2) $ 降低到 $ O(n) $。 - **斜率优化**:若问题满足特定的决策单调性,可以考虑使用斜率优化技巧进一步加速状态转移过程。 ### 时间复杂度分析 原始暴力解法的时间复杂度为 $ O(n^2) $,在 $ n \leq 10^4 $ 的情况下可能勉强通过。通过单调队列优化后,可以稳定运行于 $ O(n) $ 或 $ O(n \log n) $。 ### 应用场景 HDU-3480 的问题模型可以应用于资源调度、任务划分等场景,尤其适用于需要控制子集内部差异的问题,如图像分块压缩、数据分段处理等[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值