关于数据在内存中的存储这一方面,之前没有系统的了解过。不过之后的学习,我有了深刻的认识。
首先,先了解以下现有的数据类型吧。
一.数据类型
1.整形
char
- (unsigned char / signed char)
short
- (unsigned short [int] / signed short [int] )
int
- (unsigned int / signed int)
long
- (unsigned long [int] / signed long [int])
2.浮点数
float
double
3.构造类型
数组类型
结构体类型 — >> struct
枚举类型 — >> enum
联合类型 — >> union
4.指针类型
- void () 表示空类型,通常应用于函数的返回值类型,函数的参数,指针类型。
二.整形在内存中的存储
1.原码、反码、补码
- 计算机中的符号数有三种表示方法,即原码、反码、补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”。
- 原码:直接将二进制按照正负数的形式翻译成二进制就可以。
- 反码:将原码的符号位不变,其他位按位取反就行。
- 补码:反码 + 1就是补码。
2.大小端
对于整形来说,最为重要的问题就回归到大小端问题上。
数据 <-------由高到低
内存 -------->由低到高
- 大端模式:数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中。
- 小段模式:数据的低位保存在内存的低地址中,而数据的高位,保存在内存的高地址中。
3.判断一个机器是大端还是小端的方法
#include<iostream>
int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if(ret == 1)
std::cout << "小端" << std::endl;
else
std::cout << "大端" << std::endl;
}
4.整型提升
概念:
在K&R和C89的早期实现中,基于short和char的算术运算陷入两难的困境,因为可能会产生两种不同的结果。因此,在C99中很明确地定义了整型提升的规则.如果int能够表示原始类型中的所有数值,那么这个数值就被转成int型,否则,它被转成unsigned int型。这种规则被称为整型提升。所有其它类型都不会被整型提升改变。
char a = '2';
char b = '4';
char c = a + b;
printf("%c\n",c);
在上述过程中,尽管两个运算符”+”和”=”的操作数全为char型,但在中间计算过程中存在着整数提升:对于表达式a+b ,a、b都是char型,因此被提升至int型后,执行“+”运算,计算结果(int型)再赋值给c(char型),又执行了隐式的类型转换。
是不是觉得很不可思议。
其实可以通过一种方式来验证它:
printf(“%d”, sizeof(a + b));
大家猜猜输出的值是多少?1,对吗?很遗憾,不是1,大小是4
这是为什么呢,显然a+b进行了整型提升,而没有来得及将int型的值赋值给c(char型),所以大小就成了4。
3.浮点数在内存中的存储
首先先来看下面这一串代码
int main()
{
int n = 9;
float * pfloat = (float*)&n;
printf("n的值为:%d\n", n); //9
printf("n的值为:%f\n", *pfloat); // 0.000000
*pfloat = 9.0; //1091567616
printf("num的值为:%d\n", n); //9.000000
printf("*pfloat的值为:%f\n", *pfloat);
}
为什么对于内存中同一个数来说,浮点数和整数的解读结果会差别这么大?
原因在于浮点数的表示规则。
浮点数规则:
- (-1)^ S *M * 2 ^ E
- (-1)^ S表示符号位,当s = 0,v为正数;当s = 1时,v为负数
- M表示有效数字,大于等于1,小于2。
- 2^E表示指数位
举例来说:
- 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^ 2 。 那么,按照上面V的格式,可以得出s=0, M=1.01,E=2。
- 十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2
IEEE 754规定:
- 对于32位的浮点数,最高的一位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
- 对于64位的浮点数。最高的一位是符号位s,接着的11位是指数E,剩下的52位为有效数字M。
- 特别规定:关于M的表示方法:IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部 分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效 数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
- 至于指数E,情况就比较复杂。 首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位, 它 的取值范围为0~2047。但是,我们知道,科学计数法 中的E是可以出现负数的,所以IEEE 754规定,存入内存 时E 的真实值必须再加上一个中间数,对于8位的E, 这个中间数是127;对于11位的E,这个中间数是1023。 比如, 2^10的E是10,所以保存成32位浮点数时,必须 保存成10+127=137,即10001001
再看例题的第二部分。 请问浮点数9.0,如何用二进制表示?还原成十进制又是多少? 首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。 //9.0 -> 1001.0 ->(-1)01.00123 -> s=0, M=1.001,E=3+127=130 那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即 10000010。 所以,写成二进制形式,应该是s+E+M,即
0 10000010 001 0000 0000 0000 0000 0000
这个32位的二进制数,还原成十进制,正是1091567616。
面试题:
1.为什么对于整形来说,数据存放内存中其实存放的是补码?
答:1、使用补码,可以将符号位和其它位统一处理。
2、减法也可按加法来处理。另外,两个用补码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。
3、补码与原码相互转换,其运算过程是相同的, 不需要额外的硬件电路。