百度智能云千帆AppBuilder平台使用相关FAQ

本文介绍了百度智能云的千帆AppBuilder,一个用于构建AI原生应用的平台,及其与大模型平台的区别。此外,文章详细说明了如何体验、收费方式、免费调用额度查询、文档上传限制、浏览器兼容性、移动端使用建议以及知识数据的引用机制。AppBuilder是基于公有云的服务,用户可通过官网工单获取支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.百度智能云千帆AppBuilder和千帆大模型平台什么区别?

百度智能云千帆大模型平台是企业级大模型平台,提供大模型生产和应用的全流程开发工具链,包括数据管理、模型训练、推理、部署、应用集成等模块。

百度智能云千帆AppBuilder是基于大模型搭建AI原生应用的平台,提供搜索增强生成(RAG)、智能体(Agent)、智能数据分析(GBI)等应用框架,长文总结、CoT规划器、文生图、OCR、语音等AI能力组建以及向量数据库、SQL数据库、对象存储等基础云能力组建,降低AI原生应用的开发门槛,赋能开发者快速实现应用搭建。

2.如何体验千帆AppBuilder?

通过pc端官网入口:百度智能云千帆AppBuilder,注册百度智能云账号登录,即可体验。

3.千帆AppBuilder如何收费?

平台为每个账号提供200次免费调用(三个月有效),用于体验和调试效果;全部用完后需要购买千帆大模型付费服务。

4.在哪里能够查剩余免费次数?

「我的应用」-「应用配置」,在大模型服务中选择官方体验服务,右侧对话框上方可见剩余次数👇

5.知识集合可以选择多个文档上传吗?以及上传数据量限制是多少?

支持多个文档上传,以RAG应用举例:

文本类文档:支持.doc/.txt/.docx/.pdf四种格式,单个最大15M,单次上传最多支持10个,每个知识集合总共允许上传100个文件;

结构化文档:支持.xlsx文件,每次允许上传10个文档,每个excel 中最多存放1000行数据。

6.适配的浏览器版本?

兼容过去三年发行的浏览器。

7.移动端的多久可以适配?

为了保障更好的使用体验,建议使用pc端登录。

8.上传完知识数据,在生成内容时会引用知识集合中的内容吗?

仅上传知识文档时,大模型将引用并基于您上传的知识数据回答问题;

上传知识文档同时勾选百度搜索时,大模型将引用并结合百度搜索结果回答问题。

9.AppBuilder接入的是公有云吗?

是公有云服务。

9.有问题可联系谁来解答?

  • 官网提起工单,获取专属客服解答;

  • 扫码加入企业微信社群交流互动👏(扫码添加客服邀请您进群~)

### 百度 AppBuilder 中 Agent 调用外部 API 或数据源的方法 在百度智能云 AppBuilder 平台中,Agent 的设计旨在帮助开发者轻松集成和调用外部资源,包括但不限于 API 和数据库。以下是关于如何利用该平台的功能来实现这一目标的具体方法: #### 1. **理解 MCP 协议的作用** 百度 AppBuilder 是国内首个支持 MCP(Model Connectivity Protocol)协议的大模型应用开发平台[^3]。通过此协议,用户可以便捷地连接到各种工具和服务,从而扩展其功能范围。这意味着当您希望调用外部 API 或访问特定的数据源时,可以通过配置 MCP Server 来完成。 #### 2. **创建并配置 MCP Server 连接** 为了使 Agent 可以成功调用所需的外部服务,首先需要设置一个 MCP Server 实例。这一步骤通常涉及以下几个方面: - 定义接口地址以及认证方式; - 配置请求参数模板以便动态传递变量给目标系统; - 测试连通性和响应时间等性能指标确保稳定性。 ```bash curl --location 'http://example-mcp-server/api/v1/resource' \ --header 'Authorization: Bearer YOUR_ACCESS_TOKEN' ``` 上述命令展示了向某个假定的 MCP Server 发起 HTTP GET 请求的一个简单例子。 #### 3. **编写自定义逻辑处理返回结果** 一旦获取到来自远程服务器的信息之后,则可能还需要对其进行进一步解析或者转换才能满足实际应用场景下的需求。此时就可以借助 Python 等脚本来实施这些操作了。 ```python import json def process_response(response_data): try: parsed_json = json.loads(response_data) # 假设我们只关心其中的一部分字段 useful_info = { "id": parsed_json["id"], "name": parsed_json["attributes"]["title"] } return useful_info except Exception as e: print(f"Error occurred while processing response data: {e}") raise ``` 这段代码片段演示了一个基本函数 `process_response` ,它接受原始 JSON 字符串形式的输入,并提取出感兴趣的部分形成新的字典结构再输出[^4]。 #### 4. **整合进整体工作流程** 最后一步就是把前面准备好的各个组件组装起来构成完整的解决方案路径图谱。具体来说就是在适当的位置插入刚才编写的业务逻辑单元并与现有的应用程序框架紧密结合在一起运行测试验证最终效果是否达到预期标准。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值