自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 LangChain聊天机器人实战:从零搭建记忆型+角色扮演AI(附源码级解析与代码)

本文介绍了如何使用LangChain开发聊天机器人,从最简单的命令行聊天机器人开始,逐步增强其功能。首先,通过LangChain和OpenAI API实现了一个基础聊天机器人,但由于API的无状态特性,机器人无法记住对话上下文。为了解决这个问题,引入了LangChain的ChatMessageHistory抽象,使用InMemoryChatMessageHistory在内存中存储聊天历史,并通过RunnableWithMessageHistory将聊天历史与模型结合,使机器人能够记住对话内容。最后,通过角色

2025-05-14 15:47:27 737

原创 LangChain核心组件实战:ChatModel与PromptTemplate高效开发

LangChain 的核心抽象是聊天模型(ChatModel),它与传统的文本生成模型(LLM)不同,专为聊天模式设计,类似于 ChatGPT。ChatModel 几乎可以完全替代 LLM,推荐在大多数应用中使用。通过 LangChain,开发者可以轻松集成 OpenAI 等供应商的模型,并使用 ChatModel 进行文本翻译等任务。LangChain 提供了同步和流式调用的方式,流式调用通过 stream 方法实现

2025-05-14 15:40:22 665

原创 LangChain实战指南:一个AI应用开发生态

1. LangChain是一个开发框架,提供基础抽象和LangChain表达式语言。2. LangChain的社区生态包含大量的各种实现和工具,需要根据需求选择相应的实现。3. LangChain的扩展生态包括LangServe、LangSmith、LangGraph等工具和平台,提供更多可做的事情。4. LangChain的表达方式LCEL通过管道符简化了组装链的过程,提升了代码的表达性。5. LangChain的发展需要根据自己的情况评估使用场景,持续关注和了解新的发展。6. LangChai

2025-05-12 12:01:01 824

原创 OpenAI API:LLM编程的事实标准(下)

聊天应答通常以标准的HTTP应答形式出现,但还有一种流式应答模式,用于提高响应速度。标准HTTP应答包含唯一标识(id)、对象类型(object)、生成时间(created)、模型(model)、系统指纹(system_fingerprint)和回复内容(choices)。流式应答通过SSE(服务器发送事件)技术实现,允许服务器在生成内容时逐步推送,减少用户等待时间。SSE是单向通信,适合一次性请求场景,而WebSocket则适合双向通信和长连接。流式应答在聊天场景中尤其有用,因为它可以逐字逐句地推送内容,

2025-05-12 11:27:11 997

原创 OpenAI API:LLM编程的事实标准上

在大模型“百模大战”的背景下,学习大模型的API并不需要逐一掌握,因为大多数大模型的编程接口设计相似。OpenAI API因其广泛影响和行业标准地位,成为学习大模型API的理想选择。OpenAI API提供了多种功能,如文本生成、图像处理等,其中核心接口是聊天补全(Chat Completions)。该接口的请求参数包括核心参数(如模型和消息列表)、工程参数、工具参数和模型参数。核心参数是学习大模型编程的关键,而工具参数对于开发Agent尤为重要。通过掌握OpenAI API,可以快速上手其他大模型的API

2025-05-12 11:23:40 969

原创 大模型提示工程核心技术拆解:思维链与ReAct框架实战解析

如果说推理的部分都是大模型可以完成的,但行动要做的事恐怕就不是大模型可以单独完成的,比如搜索苹果遥控器,这显然就需要有一些其它的方式,帮助大模型完成这个搜索的动作。提示工程,顾名思义,就是研究怎么写提示词。显然,大模型知道分类是什么意思,也知道如何根据文本判断其情感,所以,在这个例子里,我们并没有给出任何更多的提示,大模型就能很好地帮我们完成分类的工作。无论是我前面的例子,还是零样本思维链,如果你自己测试,效果很有可能是不同的,原因很简单,大模型的推理能力是不断提升的,可能前一天还很傻,后一天就聪明了。

2025-04-26 17:25:19 800

原创 大模型提示词,从无效对话到精准输出:技术人必备的提示词设计框架

定义角色的作用是为 GPT 赋予特定的角色,让其从特定的角度进行思考和回答。例如,可以让它扮演历史学家的角色,从历史的角度回答我们的问题;也可以让它扮演医生的角色,从医学的角度回答我们的问题。一旦被赋予了特定的角色,GPT 就可以根据这个角色的知识和经验,给出更为准确和专业的回答。前面我们讨论过大模型的基础实现,大个模型本质上就是基于上下文信息推断下一段要输出的内容。如果不给它提供额外信息,那么它生成的内容就是通用的。

2025-04-26 17:12:12 1128

原创 大模型生成文本的底层逻辑:Token与Embedding技术全解析

这一讲,我们站在开发大模型应用的视角来理解大模型是如何运作的。我们知道了大模型的核心任务是每次添加一个词,经过了上面的学习,你应该清楚,更准确的说法是每次添加一个 Token。Token 在大模型编程中非常重要,上下文窗口的大小决定了大模型一次可以处理多少个 Token,大模型通常是用 Token 进行计费的。在生成内容的过程中,为了让内容拥有更多的创造性,需要引入随机性。由此我们引入了一个温度的概念,表示大模型的活跃程度。大模型内部处理的并不是字符串,而是向量。

2025-04-23 19:53:55 722

原创 程序员的AI开发课_用户视角下的LLM基础知识

这一讲,我们从 ChatGPT 出发,讲到了其背后的 GPT 模型。GPT 模型是一个大语言模型(Large Language Model,LLM),LLM 这个名字体现了模型的三个特点:它是模型,是 AI 能力的核心它是语言模型,其核心能力在于语言能力它是大语言模型,与传统模型相比,它最大的特点就是“大”。站在用户的视角,我们以 GPT 模型为例,介绍大模型的典型特点,其特点总结为四个“知”:知识丰富知人晓事知错就改知法守法理解 LLM,先从用户视角出发。

2025-04-23 19:29:29 756

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除