可视化成本函数
直观理解不同的w和b,是如何影响成本函数的。
可视化方法
3D空间和等高线图。
成本函数的3D空间
w和b两个参数,共同影响着成本函数的值,z轴的值即为成本函数的值,形状像一个碗底。
三维空间确认成本函数的值
找到w和b的值,这两点交汇对应的z轴高度,就是成本函数的值。
等高线图
更方便的观测成本函数的值。
如何绘制等高线图
- 假设有一座山,我们想知道山的等高线图。
- 想象成把山横着切一刀,横截面就是等高线图的样子,每个横截面点的高度都一样。
如何绘制成本函数的等高线图
从成本函数的3D空间横切一刀,结果如右上方图。
观测等高线图和线性回归
- 蓝橙绿的三个点表示w,b坐标,当w,b的位置在等高线图最中心圆圈时,对应3D空间成本函数的碗底,达到最小化成本函数。此时w,b对应的值就是最佳值。
- 图中示例的3个w,b坐标距离中心圈位置很远,未最小化成本函数,误差较大,左侧线性回归模型未能很好的拟合数据。
3d空间成本函数的形状
图中成本函数的走势被拉长了,在一元线性回归中,当w,b的取值范围相同时,成本函数在3d空间才呈现标准的倒扣碗状。
总结
我们采用3d空间和等高线图的方法,直观的看到了w,b是如何影响成本函数。在3d空间中,最优的 w 和 b 值对应碗底的位置。为了更好的看到成本函数的值,我们在3d空间横切一面,绘制了等高线图。w,b对应的坐标点越靠近等高线图的中心圈,对应成本函数的值越大,模型预测的误差就越大,最优的 w 和 b 值对应中心圈的位置。3d空间里的成本函数由于w,b取值范围不同,形状也不同,但是总有一个最低点。