吴恩达2022机器学习专项课程C1W3:1.29 决策边界&实验Lab_03决策边界

本文详细介绍了决策边界在逻辑回归中的作用,通过公式和案例展示如何通过sigmoid函数确定决策边界。讨论了决策边界形状的变化,如直线、圆圈或超平面,以及影响因素如w、b参数和特征数量。还提供了实际操作实验,包括数据集处理、sigmoid函数图和绘制决策边界的过程。
摘要由CSDN通过智能技术生成

决策边界的作用

决策边界是一个方程,提供了一种直观的方式来观察和理解模型是如何区分不同类别的,并帮助我们诊断,分析,改进模型。

决策边界公式

通过sigmoid函数,我们反推出结论:wx+b大于等于0,预测值为1,wx+b小于0,预测值为0。由此可绘制出决策边界的方程w*x+b=0在这里插入图片描述

逻辑回归下绘制决策边界

主要观察不同的数据如何设置不同的决策边界。

案例一

决策边界公式w*x+b=0,此处为x1+x2=3。所以给定两个x,直线以内的预测结果都归属y=0,直线之外的预测结果归属y=1。
在这里插入图片描述

案例二

此处决策边界公式x1²+x2²=1,当两个x在圆圈外,预测分类归属1,当两个x在圆圈内,预测分类归属0。
在这里插入图片描述

案例三

更复杂多项式方程的决策边界。在这里插入图片描述

决策边界的形状

决策边界可以是不同的线条,例如直线或圆圈状。更高的维度空间则呈现平面或超平面。
(吴恩达教授为了方便演示,选择2D空间下的两个特征及其多项式,因此呈现线条状)

影响决策边界形状的因素

改变w,b的参数,增加特征x数量,将特征x扩展为多项式。

总结

决策边界,就是通过sigmoid函数,反推出一个方程w*x+b,然后将这个方程可视化,检测是否能够将当前数据集的数据分好类。决策边界并不总是直线或线条,如果我们改变w,b,它的直线位置就有可能改变,如果增加x多项式,则它的形状就会从直线变成线条,如果增加x数量,则它的形状就变为平面或超平面。本节课的所有内容,都是假设已经计算出合适的w,b,基于w,b,我们才能构建出决策边界,然后才能通过决策边界看看有没有很好的将数据分类。

实验

1.逻辑回归数据集

在这里插入图片描述

2.根据数据集绘制散点图

在这里插入图片描述

绘制数据点函数plot_data解析

在这里插入图片描述

  • 构建布尔数组pos和neg并转换成一维数组,方便后续索引布尔数组。在这里插入图片描述

  • 原样式
    在这里插入图片描述

  • reshape(-1,)后的样式在这里插入图片描述

  • 绘制红叉和蓝圈数据点,红叉数据点的x轴和y轴 X:[pos,0]:[3. 2. 1.],X[pos,1]:[0.5 2. 2.5],蓝圈数据点的x轴和y轴 X[neg,0]:[0.5 1. 1.5],X[neg,1]:[1.5 1. 0.5],其余参数基本为数据点样式和标签。
    在这里插入图片描述

  • ax.legend控制图例位置,参数被设置为best,自动设置影响数据最小的位置。在这里插入图片描述

  • 隐藏了图表的工具栏、头部和底部区域。在这里插入图片描述

3.绘制sigmoid函数图,

通过函数图,方便观察逻辑回归是如何通过决策边界预测分类的。z>=0,预测为1,z<0,预测为0。
在这里插入图片描述

4.绘制数据集散点图的决策边界

回到我们的数据,要构建决策边界,将数据分类,我们需要先有w,b,这里为了方便演示,直接默认有了合适的w和b,并给出了决策边界x0+x1-3=0,这条决策边界很好的将数据分了类,y=1的红叉点都在边界上方,y=0的蓝圈点都在边界下方(阴影处)。在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值