点击蓝字
关注我们
AI TIME欢迎每一位AI爱好者的加入!
哔哩哔哩直播通道
扫码关注AI TIME哔哩哔哩官方账号预约直播
北京时间 10月19日
10:00—10:10
Keynote:李博
芝加哥大学计算机科学系、伊利诺伊大学香槟分校副教授
10:10—10:40
袁 焯 闻
基于博弈论的针对联邦学习后门攻击的防御
10:40—11:10
徐 彻 鉴
强化学习及自动驾驶的场景测试及安全性评估
11:10—11:40
张 佳 玮
可验证鲁棒性的利用外部知识的模型推理框架
11:40—12:10
汪 博 欣
DecodingTrust GPT模型信任解码:全方位的模型可靠性评估
北京时间 10月20日
10:00—10:30
向 臻
后门检测的普适性——方法与新的挑战
10:30—11:00
康 敏 桐
可证明鲁棒性的学习-推理共形预测框架
11:10—11:30
谢 楚 琳
联邦学习的安全与隐私及其内在联系
嘉宾介绍
李 博
芝加哥大学计算机科学系、伊利诺伊大学香槟分校副教授。曾荣获 IJCAI-2022 计算机与思想奖,斯隆研究奖,美国国家科学基金会 CAREER Award,AI's 10 to Watch,麻省理工学院技术评论 TR-35 奖,院长卓越研究奖,C.W. Gear 杰出青年教员奖奖,英特尔新星奖,赛门铁克研究实验室奖学金, 以及亚马逊、Meta、谷歌、英特尔、IBM和eBay等科技公司颁发的研究奖,并曾获得多个顶尖机器学习和安全会议的最佳论文奖。她的研究侧重于可信任的机器学习的理论和实际应用,涵盖了机器学习、安全、隐私和博弈论的交叉领域。她设计了多个可扩展框架用于可验证的鲁棒机器学习和数据隐私保护。她的工作曾受到包括《自然》、《连线》、《财富》和《纽约时报》在内的多家主流媒体的关注。
向 臻
伊利诺伊大学香槟分校Secure Learning Lab博士后,主要研究方向为可信赖人工智能及其相关应用。博士毕业于宾夕法尼亚州立大学并获得Dr. Nirmal K. Bose杰出论文奖。研究工作发表于ICML/NeurIPS/ICLR,S&P,ICCV等会议和Proc IEEE,TNNLS等期刊,并担任多个国际会议、期刊审稿人和竞赛组织者。
袁 焯 闻
伊利诺伊大学香槟分校第二年博士生,研究方向为可信赖机器学习,具体包括模型的鲁棒性与隐私性,以及博弈论在其中的应用。研究工作发表于NeurIPS等多个机器学习顶级会议,并担任MLSys, TPAMI等国多个际会议及期刊审稿人。
徐 彻 鉴
伊利诺伊大学香槟分校计算机系二年级博士生,研究领域是可信赖机器学习,主要包括模型的安全性、鲁棒性和泛化性,特别是在自然语言处理以及强化领域中。研究工作发表于 NeurIPS, ICLR 等多个机器学习顶级会议,并担任 NeurIPS, AAAI 等多个国际会议期刊的审稿人。
张 佳 玮
伊利诺伊大学香槟分校UIUC计算机系在读第一年博士生,研究领域是可信赖机器学习,主要包括模型(可验证)鲁棒性,隐私性和可解释性,同时也包括提高大模型(LLM)利用外部知识的推理能力。研究发表于多个机器学习顶级会议包括ICML, NeurIPS, SatML以及安全顶级会议USENIX Seucrity,并担任多个国际会议审稿人。
汪 博 欣
汪博欣目前是是美国伊利诺伊大学香槟分校 UIUC 计算机系第五年级的博士生。他的研究兴趣是希望探索目前机器学习模型的缺点,缩短可信机器学习在理论分析和实际场景的差距,同时构建更加稳健、更加保护用户隐私、更具泛化性的机器学习模型。他在相关领域有数十篇论文被接受到人工智能领域、自然语言处理领域和信息安全领域的顶级会议上,包括 NeurIPS、ICLR、ICML、CCS、EMNLP 等等,同时也在多个顶级会议(NeurIPS、ICLR、ICML、ACL、EMNLP 等)上担任程序委员和领域主席。
康 敏 桐
伊利诺伊大学香槟分校Secure Learning Lab博士,主要研究方向为可信赖机器学习。研究工作发表于NeurIPS/SaTML等会议和 TPAMI 等期刊,并担任多个国际会议审稿人。
谢 楚 琳
谢楚琳现为伊利诺伊大学厄巴纳-香槟分校(UIUC)Secure Learning Lab的四年级博士生,其导师为李博教授。她当前的主要研究方向为可信赖机器学习,包括机器学习的安全性、隐私性和泛化性,以及这些主题的交叉关系,特别是在联邦学习和大语言模型中。她的论文已在机器学习(ICML, NeurIPS, ICLR, CVPR, TPAMI)及计算机安全(CCS)等领域的顶会上发表,并担任多个国际会议期刊的审稿人(NeurIPS、ICLR、ICML、MLSys、TPAMI 等)。
实验室介绍
伊利诺伊大学安全学习实验室SL2(Secure Learning Lab) 由李博教授以及12名博士生和2名博士后组成,实验室隶属于计算机系。SL2实验室致力于可信赖机器学习,关注可验证的机器学习的安全性、隐私保护、公平性、可泛化性等以及它们之间的本质联系,同时关注并引领未来可信赖机器学习算法和模型大规模部署和应用。SL2实验室的研究成果重点是构建可验证性的可信机器学习算法、平台和系统。目前实验室的研究成果在大语言模型,自动驾驶、智慧医疗等对安全性质要求颇高的应用中已得到应用与验证。
请添加“AI TIME小助手(微信号:AITIME_HY)”,回复“ML”,将拉您进群!
AI TIME微信小助手
往期精彩文章推荐
- 关注我们,记得星标 -
关于AI TIME
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
迄今为止,AI TIME已经邀请了1400多位海内外讲者,举办了逾600场活动,超600万人次观看。
我知道你
在看
哦
~
点击 阅读原文 预约直播!