- 博客(1838)
- 收藏
- 关注
转载 ICLR‘25 | 大模型的长上下文自进化训练
目前,主流模型一般倾向于只使用非常少量的长文本数据来对齐模型(例如,LLaMA 3.1 的长文本后训练数据只有 1% 的比例)以适应实践中短文本占主流的场景,导致模型能力无法被很好地迁移到长文本场景中。上述长文本训练方法存在的问题是,所需的长文本后训练数据集通常需要人来标注,而人天然不擅长阅读长文本并给出足够的标注信息。长文本训练过程一般不采用 DPO 方法,因为 DPO 需要一个参考模型来约束模型输出,而参考模型本身往往并没有针对长文本优化,所以用于长文本场景时是不可靠的,可能会让模型走向错误的方向。
2025-05-18 12:01:44
8
转载 ICLR‘25 | 大模型的长上下文自进化训练
目前,主流模型一般倾向于只使用非常少量的长文本数据来对齐模型(例如,LLaMA 3.1 的长文本后训练数据只有 1% 的比例)以适应实践中短文本占主流的场景,导致模型能力无法被很好地迁移到长文本场景中。上述长文本训练方法存在的问题是,所需的长文本后训练数据集通常需要人来标注,而人天然不擅长阅读长文本并给出足够的标注信息。长文本训练过程一般不采用 DPO 方法,因为 DPO 需要一个参考模型来约束模型输出,而参考模型本身往往并没有针对长文本优化,所以用于长文本场景时是不可靠的,可能会让模型走向错误的方向。
2025-05-18 12:01:44
2
转载 ICLR‘25 | 真正「Deep」的「Research」,通过强化学习实现可自主进化的科研智能体来了!
4. 迭代反馈训练阶段:研究人员首先通过拒绝采样获取样本,通过 CycleReviewer 的打分构成偏好对,两个模型相互配合,通过强化学习的方式不断优化,CycleResearcher 根据 CycleReviewer 的反馈不断改进自身的论文生成策略,CycleReviewer 则根据 CycleResearcher 生成的论文不断提高自身的评审能力。然后,它会交替生成论文的大纲和正文,确保逻辑流畅。接下来,概述实验设置和结果,随后生成实验设计和模拟结果(注意,这里的实验结果是模拟的)。
2025-05-16 15:00:57
69
转载 ICLR‘25 | 真正「Deep」的「Research」,通过强化学习实现可自主进化的科研智能体来了!
4. 迭代反馈训练阶段:研究人员首先通过拒绝采样获取样本,通过 CycleReviewer 的打分构成偏好对,两个模型相互配合,通过强化学习的方式不断优化,CycleResearcher 根据 CycleReviewer 的反馈不断改进自身的论文生成策略,CycleReviewer 则根据 CycleResearcher 生成的论文不断提高自身的评审能力。然后,它会交替生成论文的大纲和正文,确保逻辑流畅。接下来,概述实验设置和结果,随后生成实验设计和模拟结果(注意,这里的实验结果是模拟的)。
2025-05-16 15:00:57
46
转载 ICLR‘25 | 真正「Deep」的「Research」,通过强化学习实现可自主进化的科研智能体来了!
4. 迭代反馈训练阶段:研究人员首先通过拒绝采样获取样本,通过 CycleReviewer 的打分构成偏好对,两个模型相互配合,通过强化学习的方式不断优化,CycleResearcher 根据 CycleReviewer 的反馈不断改进自身的论文生成策略,CycleReviewer 则根据 CycleResearcher 生成的论文不断提高自身的评审能力。然后,它会交替生成论文的大纲和正文,确保逻辑流畅。接下来,概述实验设置和结果,随后生成实验设计和模拟结果(注意,这里的实验结果是模拟的)。
2025-05-16 15:00:57
19
原创 超越基准:迈向可泛化评估之路|复旦大学曹艺馨老师开讲
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。迄今为止,AI TIME已经邀请了2000多位海内外讲者,举办了逾700场活动,超800万人次观看。ICML 2025结果出炉|一作讲者已开启招募,欢迎新老朋友来预讲会相聚!AI TIME欢迎每一位AI爱好者的加入!提出观点,表达想法,欢迎。
2025-05-15 14:01:18
292
原创 CVPR 2025预讲会已邀50位讲者,讲者报名通道即将关闭
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。迄今为止,AI TIME已经邀请了2000多位海内外讲者,举办了逾700场活动,超800万人次观看。ICML 2025预讲会|一作讲者已开启招募,欢迎新老朋友来预讲会相聚!AI TIME欢迎每一位AI爱好者的加入!提出观点,表达想法,欢迎。
2025-05-14 16:11:56
327
转载 大模型逻辑推理能力最新综述:北大、清华、UvA、CMU等联合发布
下图展示了一类通用的提升大模型回答的逻辑一致性的方法框架,首先对每个问题生成多个候选回答,然后对不同问题的回答计算逻辑一致性的违背程度,最后优化求解为每个问题选择一个最优答案使逻辑一致性的违背程度降到最低。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。” 这两个问题都回答 “是”,但对“喜鹊有翅膀吗?
2025-05-13 14:08:56
157
原创 ICML 2025预讲会一作讲者开启招募啦!
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。迄今为止,AI TIME已经邀请了2000多位海内外讲者,举办了逾700场活动,超800万人次观看。今年,ICML将于7月13日-19日,在加拿大温哥华「温哥华会议中心」召开。4. 活动直播与论文解读文章相结合,内容沉淀,深度且持续地宣传。提出观点,表达想法,欢迎。
2025-05-12 18:31:33
512
原创 本周大模型新动向:自动幻觉检测、多智能体强化学习、多模态数据压缩
受经典Gold-Angluin语言识别框架的启发,本文研究了一种算法是否能够在训练时仅使用来自一个未知目标语言K的样本(K是从可数语言集合L中选择的),并且可以访问LLM的情况下,可靠地判断LLM的输出是否正确或构成幻觉。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。提出观点,表达想法,欢迎。
2025-05-10 18:02:44
693
转载 5.46亿个三元组数据集!蛋白质分子研究新范式
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。一年多以来,智谱BigModel 平台上涌现出的一批又一批的学者们,将智谱 GLM 模型应用于计算机科学、大数据与统计、材料化学、医学、法律、金融、传媒、社会学、心理学多样化的科研和教学场景中,驱动研究范式和研究工具新一轮的变革。
2025-05-08 14:01:36
403
转载 多邻国爆火背后的 AI 教育逻辑:如何让学习像刷短视频一样 “上瘾”?|Z Next 4月17日直播摘要
多邻国的 AI 通过BirdBrain 模型实现个性化出题(100% AI 生成题目)和自适应学习,例如根据用户水平动态调整对话难度的 “Video Call with Lily” 功能,让技术自然融入学习流程,用户无需感知 “AI 的存在”,却能获得精准训练。但是有一个思路是,现在的模型能力,对于语言类教育完全够用。AI 表现优异,可通过隐性化设计(如多邻国的自适应出题)提升学习体验,即使出现 “幻觉”(如语法错误),对初级学习者影响微乎其微,因用户核心需求是 “无压力练习” 而非 “绝对正确”。
2025-05-06 18:01:45
550
转载 追寻AGI之梦 劳动创造美
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。迄今为止,AI TIME已经邀请了2000多位海内外讲者,举办了逾700场活动,超800万人次观看。CVPR 2025一作讲者招募中,欢迎新老朋友来预讲会相聚!AI TIME欢迎每一位AI爱好者的加入!提出观点,表达想法,欢迎。
2025-05-01 11:02:58
391
转载 学术助研招募 | 清华大学行为经济学与智能决策研究团队
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。迄今为止,AI TIME已经邀请了2000多位海内外讲者,举办了逾700场活动,超800万人次观看。CVPR 2025一作讲者招募中,欢迎新老朋友来预讲会相聚!AI TIME欢迎每一位AI爱好者的加入!提出观点,表达想法,欢迎。
2025-04-30 12:27:09
408
转载 线下活动报名 | 成都大模型产业交流会
在历史的长河中,蜀地以其深厚的文化底蕴和独特的地域特色,孕育了无数的创新与智慧。会议将搭建一个交流思想、分享经验、探索合作的平台,开启通往未来的创新之门,推动区域人工智能产业的创新发展,促进产业生态深度融合,助力成都千年蜀韵在科技的光辉下焕发新的活力。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-28 12:01:02
513
原创 本周大模型新动向:可解释性压缩、视频推理链、启发式奖励
然而,现有的基于图的RAG方法主要关注粗粒度信息摘要,缺乏对特定查询的感知能力,且检索到的内容缺乏足够的上下文信息来生成全面的回答。实验结果表明,本文提出的方法,与显着减少的模型参数,通过一步采样,实现了较大的模型相当的性能。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。CVPR 2025一作讲者。
2025-04-27 12:02:09
1095
转载 ICLR 2025 杰出论文 | 模型编辑:必要性、短板与破局法
(笔者展望,在LLM时代,零空间投影大有可为,例如:在保护LLM某种能力不受影响的同时,增强/削弱LLM在目标任务上的表现。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。原因也很简单,如上所述,模型编辑这个伏魔圈,它的使命,就是撑到下一次微调,或者说版本更迭的到来即可。但是,这并不代表判“模型编辑”死刑了。
2025-04-25 11:59:53
1072
转载 ICLR 2025 杰出论文 | Learning Dynamics of LLM Finetuning
我们之前了解了SFT的情况,而DPO算法虽然看起来复杂,但通过链式法则进行导数计算后,最终的梯度仍然在这一项上,某些变种算法也如此。例如,中间部分显示的都是由GPT生成的内容,在学习这些序列时,它们之间的影响很大,但在语义上却毫无关系。的情况,指的是答非所问的序列。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-24 14:00:30
1180
转载 ICLR‘25 | 多模态光谱信息赋能 3D 分子表征预训练
此外,不同类型的光谱可以反映不同类型的能级信息,例如,红外光谱反映了振动能级结构,而紫外。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。具体而言,这一策略通过向分子中的原子坐标随机添加噪声,然后将带有噪声的分子结构输入模型,基于模型输出的表征来预测噪声,从而实现对分子表征的学习。这类方法的理论基础在于,对分子。
2025-04-23 12:04:20
1096
转载 ICLR‘25 | 多模态光谱信息赋能 3D 分子表征预训练
此外,不同类型的光谱可以反映不同类型的能级信息,例如,红外光谱反映了振动能级结构,而紫外。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。具体而言,这一策略通过向分子中的原子坐标随机添加噪声,然后将带有噪声的分子结构输入模型,基于模型输出的表征来预测噪声,从而实现对分子表征的学习。这类方法的理论基础在于,对分子。
2025-04-23 12:04:20
1047
转载 ICLR‘25 | 多模态光谱信息赋能 3D 分子表征预训练
此外,不同类型的光谱可以反映不同类型的能级信息,例如,红外光谱反映了振动能级结构,而紫外。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。具体而言,这一策略通过向分子中的原子坐标随机添加噪声,然后将带有噪声的分子结构输入模型,基于模型输出的表征来预测噪声,从而实现对分子表征的学习。这类方法的理论基础在于,对分子。
2025-04-23 12:04:20
999
转载 ICLR‘25 | 多模态光谱信息赋能 3D 分子表征预训练
此外,不同类型的光谱可以反映不同类型的能级信息,例如,红外光谱反映了振动能级结构,而紫外。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。具体而言,这一策略通过向分子中的原子坐标随机添加噪声,然后将带有噪声的分子结构输入模型,基于模型输出的表征来预测噪声,从而实现对分子表征的学习。这类方法的理论基础在于,对分子。
2025-04-23 12:04:20
433
转载 ICLR‘25 | 多模态光谱信息赋能 3D 分子表征预训练
此外,不同类型的光谱可以反映不同类型的能级信息,例如,红外光谱反映了振动能级结构,而紫外。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。具体而言,这一策略通过向分子中的原子坐标随机添加噪声,然后将带有噪声的分子结构输入模型,基于模型输出的表征来预测噪声,从而实现对分子表征的学习。这类方法的理论基础在于,对分子。
2025-04-23 12:04:20
347
转载 OlymMATH:奥林匹克级双语数学基准,R1 正确率仅为 21.2%
近年来,大型语言模型(LLMs)在数学推理任务上取得了显著进展。在 MATH-500 上,DeepSeek-R1 和 Qwen2.5-32B-R1D 的准确率非常接近(97.3% vs 94.3%),但在 OlymMATH-EN-HARD 上,两者的准确率分别下降至 21.2% 和 13.6%,表明 OlymMATH 在区分不同模型的推理能力方面更具优势。实验结果表明,从思维链长度的分布来看,OlymMATH-EASY 与 AIME 具有类似的难度,而 OlymMATH-HARD 则包含更多的挑战性题目。
2025-04-22 12:30:48
1209
转载 ICLR 2025 | 生成图像检测新突破:“幻像熔炉” & “超级侦探” 精彩演绎
与之前的基准数据集不同,团队从多个流行的 AI 绘画社区(如 ArtStation、Civitai 和 Liblib)收集了超过 150K 的 AI 生成图像,这些图像均由广泛的用户创作,使用了多种先进的生成模型(如 Midjourney、DALL·E 3 和 Stable Diffusion 等)。本论文通过对现有 AI 生成图像检测方法的重新审视,提出了一个新的问题设定,构建了更具挑战性的 Chameleon 数据集,并设计了一个融合多专家特征的检测器 AIDE。最后通过MLP网络输出分类结果。
2025-04-21 12:01:22
1227
原创 本周大模型新动向:知识蒸馏、个性化视频聊天、幻觉检测
值得注意的是,通过视觉指令微调,该模型在保持与前身架构一致性的同时获得了图像编辑功能,揭示了统一视觉理解、生成和编辑的潜力。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。全面的实验表明,本文验证的蓝图到细节的方法产生了高质量的训练数据,使得能够开发出更可靠、高效和有能力的代理。作者开源了收集到的合成数据和训练的。
2025-04-20 12:02:02
1803
原创 面向AI Infra的系统软件:挑战、思考和实践|刘譞哲教授开讲
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。迄今为止,AI TIME已经邀请了2000多位海内外讲者,举办了逾700场活动,超800万人次观看。CVPR 2025结果出炉|一作讲者已开启招募,欢迎新老朋友来预讲会相聚!AI TIME欢迎每一位AI爱好者的加入!提出观点,表达想法,欢迎。
2025-04-19 12:03:47
1238
转载 ICLR‘25 | 评估大模型智能体的复杂任务规划能力
研究发现,工作流不仅可以作为一种流程先验知识直接指导智能体的规划过程,帮助其在复杂任务中更高效地执行,还可以作为链式思考(Chain-of-Thought, CoT)的增强手段,通过为智能体提供更相关的API选择,减轻其在多步任务中的负担。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-18 12:03:39
1152
转载 ICLR‘25 | 评估大模型智能体的复杂任务规划能力
研究发现,工作流不仅可以作为一种流程先验知识直接指导智能体的规划过程,帮助其在复杂任务中更高效地执行,还可以作为链式思考(Chain-of-Thought, CoT)的增强手段,通过为智能体提供更相关的API选择,减轻其在多步任务中的负担。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-18 12:03:39
1026
转载 ICLR‘25 | 评估大模型智能体的复杂任务规划能力
研究发现,工作流不仅可以作为一种流程先验知识直接指导智能体的规划过程,帮助其在复杂任务中更高效地执行,还可以作为链式思考(Chain-of-Thought, CoT)的增强手段,通过为智能体提供更相关的API选择,减轻其在多步任务中的负担。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-18 12:03:39
894
转载 ICLR‘25 | 评估大模型智能体的复杂任务规划能力
研究发现,工作流不仅可以作为一种流程先验知识直接指导智能体的规划过程,帮助其在复杂任务中更高效地执行,还可以作为链式思考(Chain-of-Thought, CoT)的增强手段,通过为智能体提供更相关的API选择,减轻其在多步任务中的负担。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-18 12:03:39
827
转载 ICLR‘25 | 评估大模型智能体的复杂任务规划能力
研究发现,工作流不仅可以作为一种流程先验知识直接指导智能体的规划过程,帮助其在复杂任务中更高效地执行,还可以作为链式思考(Chain-of-Thought, CoT)的增强手段,通过为智能体提供更相关的API选择,减轻其在多步任务中的负担。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-18 12:03:39
763
转载 ICLR‘25 | 评估大模型智能体的复杂任务规划能力
研究发现,工作流不仅可以作为一种流程先验知识直接指导智能体的规划过程,帮助其在复杂任务中更高效地执行,还可以作为链式思考(Chain-of-Thought, CoT)的增强手段,通过为智能体提供更相关的API选择,减轻其在多步任务中的负担。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-18 12:03:39
718
转载 ICLR‘25 | 评估大模型智能体的复杂任务规划能力
研究发现,工作流不仅可以作为一种流程先验知识直接指导智能体的规划过程,帮助其在复杂任务中更高效地执行,还可以作为链式思考(Chain-of-Thought, CoT)的增强手段,通过为智能体提供更相关的API选择,减轻其在多步任务中的负担。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-18 12:03:39
669
转载 ICLR‘25 | 评估大模型智能体的复杂任务规划能力
研究发现,工作流不仅可以作为一种流程先验知识直接指导智能体的规划过程,帮助其在复杂任务中更高效地执行,还可以作为链式思考(Chain-of-Thought, CoT)的增强手段,通过为智能体提供更相关的API选择,减轻其在多步任务中的负担。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
2025-04-18 12:03:39
608
转载 ICLR‘25 | Dynamic Diffusion Transformer
在空间级别,同样需要引入一个 Rooter(Rtoken)来预测每帧图片输入 token 中需要计算的部分,得到一个token mask,mask的值为0代表该 token 不需要计算,而 mask 的值为 1 代表该 token 需要计算。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。2、扩展对模型的支持。
2025-04-17 11:41:29
959
转载 ICLR‘25 | Dynamic Diffusion Transformer
在空间级别,同样需要引入一个 Rooter(Rtoken)来预测每帧图片输入 token 中需要计算的部分,得到一个token mask,mask的值为0代表该 token 不需要计算,而 mask 的值为 1 代表该 token 需要计算。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。2、扩展对模型的支持。
2025-04-17 11:41:29
822
转载 ICLR‘25 | Dynamic Diffusion Transformer
在空间级别,同样需要引入一个 Rooter(Rtoken)来预测每帧图片输入 token 中需要计算的部分,得到一个token mask,mask的值为0代表该 token 不需要计算,而 mask 的值为 1 代表该 token 需要计算。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。2、扩展对模型的支持。
2025-04-17 11:41:29
784
转载 ICLR‘25 | Dynamic Diffusion Transformer
在空间级别,同样需要引入一个 Rooter(Rtoken)来预测每帧图片输入 token 中需要计算的部分,得到一个token mask,mask的值为0代表该 token 不需要计算,而 mask 的值为 1 代表该 token 需要计算。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。2、扩展对模型的支持。
2025-04-17 11:41:29
286
转载 ICLR‘25 | Dynamic Diffusion Transformer
在空间级别,同样需要引入一个 Rooter(Rtoken)来预测每帧图片输入 token 中需要计算的部分,得到一个token mask,mask的值为0代表该 token 不需要计算,而 mask 的值为 1 代表该 token 需要计算。AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。2、扩展对模型的支持。
2025-04-17 11:41:29
217
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人