直播预告 | NeurIPS 2023 Spotlight 论文 | 1月17日 15:00

点击蓝字

277d1148660509c0ad1ab456a6667e18.jpeg

关注我们

AI TIME欢迎每一位AI爱好者的加入!

fb113e13def78356d8b35ba35c58846a.jpeg

哔哩哔哩直播通道

扫码关注AITIME哔哩哔哩官方账号预约直播

1月17日 15:00-16:00

52a72e502d03852b796eda454fcbbbe0.jpeg

1bc9f69ff89541ba09b5f90c287ffdae.png

讲者介绍

f6118d468b35e8606712ea276b4c9c78.png

黄若孜

腾讯AI LAB游戏AI研究员,2020年复旦大学硕士毕业后加入腾讯AI LAB,主要从事游戏AI方向研发。

964f90c2cf97a92b59d76cdd45c29324.png

报告题目

3ca8398107d5d5874a6216abb9b81a09.png


A Robust and Opponent-Aware League Training Method for StarCraft II

bace569c76e33a9e7530e5893d42dc90.png

报告简介

590ebc7b0d8533caec92315b21232f7c.png

在星际争霸2这种大型RTS游戏中训练一个超乎常人水平的AI是极其困难的,对AI的局内策略应变能力提出了极大挑战。

为了高效提升AI能力,ROA-Star改进了联盟训练的exploiter训练算法以及创新地赋予了AI对手建模能力,最终用比AlphaStar更少的资源训练了一个策略应变更鲁棒的超越人类玩家水平的AI。

往期精彩文章推荐

7d2f788db9a03ab8e8e531d6f2437e68.jpeg

记得关注我们呀!每天都有新知识!

 关于AI TIME 

AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。

迄今为止,AI TIME已经邀请了1600多位海内外讲者,举办了逾600场活动,超700万人次观看

37bb873bd84cfe688b141e0854f524e3.png

我知道你

在看

~

3fec0a1f3ecc9d15b3bd2ffbc6239704.gif

点击 阅读原文 预约直播!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值