「AI Drive」是由 biendata 和 PaperWeekly 共同发起的学术直播间,旨在帮助更多的青年学者宣传其最新科研成果。我们一直认为,单向地输出知识并不是一个最好的方式,而有效地反馈和交流可能会让知识的传播更加有意义,从而产生更大的价值。
本期 AI Drive,我们邀请到中国科学院信息工程研究所直博四年级-加小俊,为大家在线解读其发表在CVPR2022最新研究内容:LAS-AT:基于可学习攻击策略的对抗训练。对本期主题感兴趣的小伙伴,5 月 31 日(周二)晚 7 点,我们准时相约 AI_Drive B 站直播间。
一、直播信息
1、演讲摘要:
对抗训练通常被描述为一个minimax的优化问题,其性能取决于生成对抗样本的内部优化。以前的大多数方法都采用投影梯度下降(PGD),手动指定攻击参数来生成对抗样本。攻击参数的组合可以称为攻击策略。一些研究表明,在整个训练阶段使用固定的攻击策略生成对抗样本会限制模型鲁棒性的提升,并建议在不同的训练阶段使用不同的攻击策略来提高模型鲁棒性。但是,这些多阶段手工设计的攻击策略需要大量的领域专业知识,且鲁棒性改进有限。在本文中,我们通过引入“可学习攻击策略”的概念,提出了一种新的对抗训练框架,该框架可以自主学习如何生成攻击策略,以提高模型鲁棒性。我们的框架由一个使用对抗样本进行训练