二叉树
树概念及结构
树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
- 有一个特殊的结点,称为根结点,根节点没有前驱结点
- 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
- 因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
树的相关概念
- 节点的度:一个节点含有的子树(子节点)的个数称为该节点的度; 如上图:A的为6
- 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
- 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
- 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
- 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
- 兄弟节点:具有相同父节点的节点互称为兄弟节点(兄弟指的是亲兄弟); 如上图:B、C是兄弟节点
- 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
- 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
- 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4(高度是从一开始计时的,而不是零)、树的高度为3(从0开始计算)。
注意: 树的高度或深度如果从0开始算,那么空树就是-1;如果从1开始算,那么空树就是0; - 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为堂兄弟节点
- 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
- 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
- 森林:由m(m>0)棵互不相交的树的集合称为森林(并查集就是一个森林)
注:
- 节点有些地方写的是这个结点,有些地方写的是这个节点,这两个都是可以的没有什么区别,使用时尽量统一使用同一个名称不要混。
- 第一个进来的节点—根
- 计算树的高度或深度时建议从一开始,因为按从一开始的方式来计算空树的高度是0,只有根节点的树的高度是1。而按从零开始的方式来计算空树的高度是-1,只有根节点的树的高度是0。建议使用这种理论。
树的表示
如果知道树的度就可以用以下方式表示树:
struct TreeNode
{
int data;
struct TreeNode* subs[6]; //树的度
};
注意:这种树的表示方式会有内存浪费,因为有的节点的度不一定都和树的度一样。
在不知道树的度的情况下可以用以下方式表示树:
struct TreeNode
{
int data;
SeqList subs; //顺序表存储节点的指针
};
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。其中最常用的是孩子兄弟表示法。
双亲表示法:
struct TreeNode
{
int data;
struct TreeNode* parent
};
//双亲表示法(但不实用)
左孩子右兄弟表示法(孩子兄弟表示法)
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 左边开始的第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个(右边)兄弟结点
DataType _data; // 结点中的数据域
};
应用:Windows操作系统利用这种结构表示文件系统
树在实际中的运用(表示文件系统的目录树结构)
二叉树概念及结构
概念
一棵二叉树是结点的一个有限集合,该集合:
- 或者为空
- 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
注意:
- 二叉树不存在度大于2的结点
- 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的(这些又称为二叉树):
现实中的二叉树及结构
特殊的二叉树
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K(层数从1开始计算),且结点总数是2^k-1 ,则它就是满二叉树(每一层都是满的)。
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。
总结:
- 满二叉树的每一层都是满的
- 完全二叉树是前K-1层都是满的,最后一层不一定满,但是最后一层从左到右必须是连续的。
- 满二叉树一定是完全二叉树,完全二叉树不一定是满二叉树
- 完全二叉树的总节点个数范围是[2^(k-1) , 2^k-1]。完全二叉树最少节点个数的情况是前K-1层是满的最后一层只有一个节点,最多的情况是满二叉树的情况。
- 注意的是满二叉树是一种特殊的完全二叉树(最后一层满)。
二叉树的性质
-
若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点
-
若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2^h-1
-
对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有 n0=n2 +1
-
若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log2(n+1) (ps:log2(n+1) 是log以2为底,n+1为对数),这个公式是通过2^k-1=n计算出来的
-
完全二叉树中度为一的最少有0个,最多有1个
-
对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
-
- 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
-
- 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
-
- 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
链式存储
二叉树的链式存储结构是指用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前使用的一般都是二叉链。
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pParent; // 指向当前节点的双亲
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
};
**总结:**满二叉树和完全二叉树适合用顺序存储,因为节点是挨着存放的。但是并不意味着只有这两个特殊的二叉树能使用顺序存储,普通的二叉树也可以。这种的二叉树使用顺序存储会存在一定的空间浪费。说明顺序存储只适合存储完全二叉树或者满二叉树。
二叉树的顺序结构及实现
二叉树的顺序结构
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
注:
-
数据结构和操作系统这两门学科中都有栈和堆这两个名词,这两个名词之间没有关联关系。栈和堆在数据结构中栈是后进先出的线性表数据结构、堆是用于排序以及选top数的二叉树数据结构。栈和堆在操作系统中栈是函数调用会建立栈帧(其中栈帧就是在栈上开空间的)、堆是动态开辟内存空间在堆上开辟,它们两个是对内存的一个区域的划分的名称(栈和堆是内存划分两个区域的名称)。
-
堆是用数组存储表示的完全二叉树
堆的概念及结构
如果有一个关键码的集合K = { k 0 , k 1 , ⋯ , k n − 1 k_0,k_1, \cdots , k_{n-1} k0,k1,⋯,kn−1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足: K i K_i Ki <= K 2 ∗ i + 1 K_{2*i+1} K2∗i+1且 K i K_i Ki <= K 2 ∗ i + 2 K_{2*i+2} K2∗i+2( K i K_i Ki >= K 2 ∗ i + 1 K_{2*i+1} K2∗i+1