随着机器学习和深度学习等技术的突破,人工智能相关技术被广泛的应用到了各行各业。但是要将学术界、工业界先进的算法模型和实践经验,要快速的应用到自己的业务场景中还是需要做很多工作。同时实在智能RPA学院展开了AI算法平台进行了研究和实验。
为了能够快速的进行算法相关实验,在实际的工业场景中落地,就需要一个具有高性能,可复用和能灵活迭代的AI算法平台。同时,对于一些本身没有算法经验的团队或则个人,也可以使用算法平台,让各种人工智能的算法服务于自己的需求,对于所有人而言,人工智能都将变得唾手可得。
要打造一个满足当前需求的AI算法平台,需要从计算性能,平台易用性,满足真实业务场景需求等不同的方面进行考量,文本将带你了解如何打造一个面向AI的算法平台。
AI算法平台简介
算法平台的核心是模型+快速上线,因此算法平台的核心也是这两个模块。但是整个算法平台将有很多模块构成。可快速调用的模型库,拥有XGBoost、GBDT、text-CNN、bert等主流的机器学习和深度学习模型。
可以根据业务场景灵活拖拽各种复杂的数据预处理和特征工程操作。
底层计算平台,为了满足大数据计算的问题,使用spark提供分布式流处理框架保证在较短的时间内计算出相应的结果。当实验完成后,可以一键导出当前的预测流进行上线工作,不需要重新编写相关代码进行上线工作,一键完成。自由的算法组件开放,平台本身只提供通用的常见的一些算法模型和特征工程组件,可以根据自己的业务需求编写相应代码并部署上线。
深度学习中的神经网络结构,可以根据用户的需求自行拖拽,集成了常见的CNN、RNN、LSTM和Dense等不同的网络层。
算法平台的大致组成情况