AI算法平台是如何炼成的 | 实在智能AI+RPA学院

本文探讨了构建高性能、可复用、灵活迭代的AI算法平台的重要性,介绍了平台的核心模块,如计算引擎(基于Spark)和模型库。平台支持用户自定义算法组件和拖拽式构建神经网络,简化了算法模型的上线流程,降低了AI在业务场景中的应用门槛。
摘要由CSDN通过智能技术生成

随着机器学习和深度学习等技术的突破,人工智能相关技术被广泛的应用到了各行各业。但是要将学术界、工业界先进的算法模型和实践经验,要快速的应用到自己的业务场景中还是需要做很多工作。同时实在智能RPA学院展开了AI算法平台进行了研究和实验。

为了能够快速的进行算法相关实验,在实际的工业场景中落地,就需要一个具有高性能,可复用和能灵活迭代的AI算法平台。同时,对于一些本身没有算法经验的团队或则个人,也可以使用算法平台,让各种人工智能的算法服务于自己的需求,对于所有人而言,人工智能都将变得唾手可得。

要打造一个满足当前需求的AI算法平台,需要从计算性能,平台易用性,满足真实业务场景需求等不同的方面进行考量,文本将带你了解如何打造一个面向AI的算法平台。

AI算法平台简介
算法平台的核心是模型+快速上线,因此算法平台的核心也是这两个模块。但是整个算法平台将有很多模块构成。可快速调用的模型库,拥有XGBoost、GBDT、text-CNN、bert等主流的机器学习和深度学习模型。
可以根据业务场景灵活拖拽各种复杂的数据预处理和特征工程操作。
底层计算平台,为了满足大数据计算的问题,使用spark提供分布式流处理框架保证在较短的时间内计算出相应的结果。当实验完成后,可以一键导出当前的预测流进行上线工作,不需要重新编写相关代码进行上线工作,一键完成。自由的算法组件开放,平台本身只提供通用的常见的一些算法模型和特征工程组件,可以根据自己的业务需求编写相应代码并部署上线。

深度学习中的神经网络结构,可以根据用户的需求自行拖拽,集成了常见的CNN、RNN、LSTM和Dense等不同的网络层。

算法平台的大致组成情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值