- 博客(13)
- 收藏
- 关注
原创 裸金属服务器二三事
裸金属服务器是指客户可以直接控制的物理服务器,服务器上没有虚拟化层,没有共享资源。用户可以将裸金属服务器理解为一台独立的物理计算机,与传统的虚拟机不同,裸金属服务器不会因共享或多租户环境而导致性能下降。因此,它适合对性能有较高要求的应用场景,例如高性能计算、数据密集型应用、大数据分析等。裸金属服务器往往带有独占的处理能力和存储资源,租户拥有更高的控制权限。裸金属服务器能实现更高效的负载管理和独占资源使用,满足了许多需要直接访问硬件的场景需求。
2024-10-26 10:29:08
372
原创 理论与实践结合:深入学习计算机网络
理论与实践相结合是学习计算机网络的核心方法。通过理论学习,你可以建立坚实的基础;而通过实践操作,你将更深入地理解网络协议和实际应用中的挑战。不断进行实验和项目练习,不仅能帮助你掌握网络的核心知识,还能为将来的工作和研究奠定基础。
2024-10-25 11:20:11
828
原创 C++11 中的内存对齐:alignas 与 alignof
*alignas**:用于显式设置类型或对象的对齐方式。**alignof**:用于查询类型或对象的对齐要求。内存对齐:是硬件、性能优化和正确性保证的重要机制,合理的对齐方式有助于提高程序性能。alignas可以帮助程序员在需要特殊对齐的场合手动指定对齐方式,而alignof则提供了一种机制来检查编译器为类型选择的对齐方式。
2024-10-24 11:54:29
496
原创 对于C语言,什么算作normal exit
在C语言中,程序的正常退出指的是程序通过以下方式之一结束运行,而非由于信号中断、未捕获的异常或调用abort()等导致的异常终止。C语言中的 "normal exit" 指的是程序通过return或exit()正常结束的情况。此时,atexit()注册的函数会被调用。如果程序因调用abort()或发生未捕获的异常(如信号中断、段错误等)导致异常终止,则不算作正常退出,atexit()函数不会被执行。return结束main()函数exit()函数调用(不会调用atexit()函数,但这是正常的快速退出)
2024-10-23 11:46:18
404
原创 为什么终端关闭后程序会自动结束?
在使用命令行(如Windows的CMD或macOS的Terminal)时,很多用户可能都会遇到这样一个问题:通过命令行启动的程序,在关闭该命令行窗口后会自动终止。这种现象并非偶然,而是基于操作系统进程管理机制的自然结果。本文将深入探讨这种行为背后的原理,并介绍如何避免程序在关闭终端窗口时被自动结束。
2024-10-22 11:41:09
1655
原创 代言人换不停,京东再见再也不见
然而,在这次代言风波中,京东似乎忽视了消费者的声音,选择的代言人并没有得到广泛的认可,反而加剧了部分用户的不满情绪。退换货政策的复杂化、部分商品的质量问题,以及京东物流的速度减缓,都让人不禁怀疑京东是否还在坚持其曾经引以为傲的“以用户为中心”的理念。京东作为中国领先的电商平台,其代言人选择不仅代表了品牌的市场策略,也反映了其对公众意见的态度。尤其是对于长期以来忠实于京东平台的消费者来说,频繁更换代言人不仅削弱了品牌的稳定性,还让用户对京东是否真正理解并重视消费者的核心诉求产生了疑问。
2024-10-22 11:10:07
408
原创 京东危机:一个长期PLUS会员的担忧与反思
作为一名忠实的京东用户,我希望看到京东能够从此次事件中吸取教训,在未来的发展中更加稳健。尽管这次杨笠事件引发了广泛的争议,但我依然相信京东在电商领域的巨大潜力。然而,如果京东不能迅速调整策略,挽回用户信任,其在市场中的领先地位可能会受到影响。希望京东能够通过正确的决策,继续为用户提供优质的服务,同时守护好品牌的形象和声誉。
2024-10-19 11:03:36
522
原创 AIPC与传统PC的全面对比:2024年末是否值得购买?
AIPC并不是噱头,它确实具备强大的AI计算能力,尤其适合从事AI相关工作的开发者和科研人员。然而,对于普通用户或不需要大量AI计算的人来说,AIPC可能显得有些“超前”。它的强大功能可能在短期内无法被完全利用。在2024年末,如果你的工作或研究确实需要大量的AI计算,并且你希望在本地而非云端进行这些任务,AIPC是一个值得投资的选择。如果你主要用于日常计算或轻度的AI任务,传统PC配合云计算服务可能仍然是一个更具性价比的解决方案。
2024-10-18 13:19:47
2258
原创 通俗易懂聊CNN之卷积
卷积是两个函数之间的一种运算,通常表示为f * g,其中f和g是两个函数。其中,τ是一个中间变量,表示函数f和g之间的平移关系。简单来说,卷积是将一个函数与另一个函数进行逐点的乘积并求和。卷积是信号处理、图像处理和深度学习中非常重要的操作。它通过卷积核与输入信号的局部区域进行点积运算,提取出有用的特征信息。在深度学习中,卷积是卷积神经网络的核心操作,它帮助模型从数据中提取出丰富的特征,并且在计算效率、参数数量和特征提取能力方面具有显著优势。
2024-10-17 12:09:33
1336
原创 Transformer的核心思想---自注意力机制
多头注意力机制的工作原理是:将输入向量分成多个子空间,在每个子空间上分别计算注意力,然后将这些注意力的结果拼接起来。通过这种方式,模型能够在不同的子空间中关注不同的信息。举个例子,在翻译句子时,一个注意力头可能会关注语法结构,而另一个注意力头可能会关注单词之间的语义关系。这种多角度的处理方式让模型变得更加灵活和强大。自注意力机制是Transformer模型的核心组成部分,它通过引入Query、Key、Value的方式让模型能够灵活、高效地捕捉序列中的依赖关系。
2024-10-16 12:42:00
1863
原创 Transformer模型知多少?
Transformer是一个神经网络架构,最初是为了解决自然语言处理中的序列问题提出的。序列问题可以是诸如翻译句子、生成文本、总结文章等任务。传统上,这类任务依赖于序列模型,比如RNN(递归神经网络)或LSTM(长短期记忆网络),但这些传统模型有很多局限性,特别是在处理长文本时效率较低、容易丢失重要的上下文信息。而Transformer模型使用了一种全新的架构来解决这些问题,它的核心机制叫做“注意力机制”,尤其是“自注意力机制(Self-Attention)”。自注意力机制(Self-Attention)
2024-10-15 12:24:23
665
原创 GPT是什么?不会还有人不知道其中的含义吧
GPT系列模型的发展历程展示了自然语言处理技术的巨大进步。从GPT-1到GPT-4,随着模型规模的逐步增大和架构的不断优化,GPT展现出了越来越强的文本生成和理解能力。特别是GPT-3和GPT-4的发布,进一步推动了AI在对话、写作、编程等多个领域的广泛应用。然而,随着模型复杂度的增加,也带来了计算成本、模型偏见等新挑战。未来,GPT系列的演进可能会继续朝着更高效、更智能、更具有推理能力的方向发展。
2024-10-14 14:33:37
1673
原创 《算法(第四版)》详解与推荐
算法(第四版)》注重算法的实用性和工程应用,通过使用Java语言实现算法,帮助读者理解如何在实际项目中高效应用这些算法。数据结构和算法设计与分析。在讲解每个算法时,作者特别注重性能分析,通过具体的数据和数学推导分析算法的时间复杂度和空间复杂度,帮助读者更好地理解算法的效率及其在实际问题中的表现。该书从最基础的排序和查找算法开始,一步步深入讨论了更复杂的数据结构和算法主题,例如图论和字符串处理。
2024-10-13 13:03:29
1101
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人