【机器学习】拉格朗日乘子法求解最优化问题

本文介绍了拉格朗日乘子法如何处理带有约束条件的优化问题,通过一元函数示例展示了如何构造拉格朗日函数并求解方程组。着重讲解了如何处理多个约束条件的情况,以及利用对偶性质求解最小值的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

引言:

一个约束条件例子:

多个约束条件:


引言:

拉格朗日乘子法是解决带有约束条件的优化问题的一种常用方法,也适用于不等式约束条件。它的基本思想就是用过拉格朗日乘子来把含有m个变量和n个约束条件的约束优化问题转换成含有(m+n)个变量的无约束优化问题。

一个约束条件例子:

以一个一元函数为例,假设有一个约束条件g(x)≤0,原优化问题可以描述为:

函数:min f(x)

约束条件:s.t. g(x)≤0

引入拉格朗日乘子λ,整合得到拉格朗日函数L(x,λ):

L(x,λ) = f(x) + λg(x)

其中,λ为拉格朗日乘子。

为求解原问题,我们要分别对目标函数和约束条件分别求导得到:

∂L/∂x = ∂f/∂x + λ∂g/∂x = 0

∂L/∂λ = g(x) ≤ 0

由于g(x)≤0,故λ≥0。

因此,我们可以得到拉格朗日方程组:

∂f/∂x + λ∂g/∂x = 0

g(x) ≤ 0

λ ≥ 0

λg(x) = 0

最后,我们解出拉格朗日方程组即可得到原问题的最优解。

需要注意的是,由于有不等式约束条件,故约束条件不一定在最优解处取到等号,因此需要对约束条件的取等和不取等情况进行分类讨论,去掉不满足条件的解,最终得到该问题的最优解。

多个约束条件:

我们要求解的函数为:

 求解多个约束条件下的最小值,形式如下:

整合函数得到:(\alpha _{i}为拉格朗日乘子)

修改目标函数: 

修改约束条件:

 整合后结果为:

约束条件为:

然后利用对偶性质求解: 

 可得:

再根据已知条件代入计算: 

 最后根据约束条件:

最后可求得约束条件下的最小值。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值