MAE的作用

自监督学习通过随机mask图像patch,使用未mask部分进行预训练,encoder处理后由decoder重建被mask的区域,MSEloss专注于评估mask部分的重建质量。重点在于encoder的学习特征,而非decoder的重建能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自监督学习,相当于高效的预训练encoder。

做法:随机mask一定百分比的patch,将未mask的patch作为输入,经过encoder-decoder,在decoder时重建输出重建图片,MSE loss只计算mask部分的patch。decoeder不重要,我们需要的是已经自学习特征的encoder

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值